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Abstract 

 

Chronic traumatic encephalopathy (CTE) is a neurodegenerative disorder which may 

result from repetitive brain injury. A variety of tau-immunoreactive pathologies are 

present including neurofibrillary tangles (NFT), neuropil threads (NT), dot-like grains 

(DLG), astrocytic tangles (AT), and occasional neuritic plaques (NP). In tauopathies, 

cellular inclusions in the cortex are clustered within specific laminae, the clusters 

being regularly distributed parallel to the pia mater. To determine whether a similar 

spatial pattern is present in CTE, clustering of the tau-immunoreactive pathology was 

studied in the cortex, hippocampus, and dentate gyrus in eleven cases of CTE and 

seven cases of Alzheimer’s disease neuropathologic change (ADNC) without CTE. In 

CTE: (1) all aspects of tau-immunoreactive pathology were clustered and the clusters 

were frequently regularly distributed parallel to the tissue boundary, (2) clustering was 

similar in two CTE cases with minimal co-pathology compared with cases with 

associated ADNC or TDP-43 proteinopathy, (3) in a proportion of cortical gyri, 

estimated cluster size was similar to that of cell columns of the cortico-cortical 

pathways, and (4) clusters of the tau-immunoreactive pathology were infrequently 

spatially correlated with blood vessels. The NFT and NP in ADNC without CTE were 

less frequently randomly or uniformly distributed and more frequently in defined 

clusters than in CTE. Hence, the spatial pattern of the tau-immunoreactive pathology 

observed in CTE is typical of the tauopathies but with some distinct differences 

compared to ADNC alone. The spread of pathogenic tau along anatomical pathways 

could be a factor in the pathogenesis of the disease.  

 

Key Words: Chronic traumatic encephalopathy (CTE); Alzheimer’s disease 

neuropathologic change (ADNC); Tauopathy; Neurofibrillary tangle; Spatial pattern; 

Spatial correlation 
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Introduction 

 

Chronic traumatic encephalopathy (CTE) is a neurodegenerative disorder which may 

result from repetitive brain injury (Geddes et al 1999, Jordan 2013). It has been 

recorded in association with a variety of contact sports including boxing, American 

football, hockey, and wrestling (Maroon et al. 2015) and has also been reported in 

military veterans exposed to blast shock waves from explosive devices (Goldstein et 

al. 2012; McKee et al. 2013, 2014, 2015; Shetty et al. 2014).  

 

Clinical symptoms of CTE include impairment of memory and executive function, 

behavioural change, and motor dysfunction (Saing et al. 2012). Neuropathologically, 

CTE cases exhibit reduced gray matter volume in several brain regions, most 

prominently affecting frontal and anterior temporal lobes and the limbic and striato-

nigral systems associated with enlargement of the lateral and third ventricles (McKee 

et al. 2013, 2016). A spectrum of tau-immunoreactive pathology is present including 

neurofibrillary tangles (NFT) (Kieman et al. 2015; McKee et al. 2013), neuropil 

threads (NT), dot-like grains (DLG) (Armstrong et al. 2016), and astrocytic tangles 

(AT) (Saing et a.l 2012; Stein et al. 2014, 2015), a proportion of the latter resembling 

thorn-shaped astrocytes observed in other disorders (Armstrong et al. 1999, 2000, 

2007a). The isoform profile and phosphorylation state of tau in CTE is similar to that 

of Alzheimer’s disease (AD) (Schmidt et al. 2001) in that both three-repeat (3R) and 

four-repeat (4R) tau are present in equal ratios. In a proportion of cases, AD 

neuropathologic change (ADNC), viz., beta-amyloid (A) deposits and neuritic 

plaques (NP) are present (Graham et al. 1995; Johnson et al 2012, Stein et al. 2015). 

In addition, oligodendroglial inclusions (GI) are occasionally present in CTE together 

with low densities of abnormally enlarged neurons (EN) and vacuolation (Armstrong 

et al. 2016). 

 

In several tauopathies, e.g., AD (Armstrong 1993a), Pick’s disease (PiD) (Armstrong 

et al. 1998a), CBD (Armstrong and Cairns 2009), and PSP (Armstrong et al. 2007b), 

tau-immunoreactive inclusions in the cortex are frequently clustered within particular 

laminae, the clusters being regularly distributed parallel to the pia mater. This 

clustering pattern could result from the degeneration of neuroanatomical pathways 

(Armstrong et al 2001) and a consequence of the ‘prion-like’ behaviour of 
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pathological tau which spreads among brain regions along anatomical pathways 

(Goedert 2010; Armstrong and Cairns 2012). Hence, to determine whether similar 

clustering was present in CTE, the spatial patterns of the tau-immunoreactive 

pathologies were studied in the cortex and hippocampus in 11 cases of the disease and 

compared with seven cases of ADNC without CTE.  

 

Materials and Methods 

 

Cases 

 

CTE cases (N = 11, mean age 70 years, SD = 6.42) (Table 1) and ADNC cases not 

associated with CTE (n = 7, mean age 79 years, SD = 8.83) (Table 1) were obtained 

from Boston University’s CTE centre (VA-BU-CLF Brain Bank). With the exception 

of one case, a boxer for 26 years (Case C), all individuals with CTE had played 

American football, career durations being in the range 11-24 years. In addition, all 

patients had suffered at least one traumatic episode resulting in concussion, some with 

accompanying loss of consciousness, the majority of cases having experienced 

multiple episodes of trauma during their careers. All cases were diagnosed according 

to criteria published by McKee et al. (2016): (1) foci of perivascular NFT, AT, and 

DLG irregularly distributed in cortex with a predilection for the sulcal depths, (2) 

NFT in superficial laminae II/III especially in temporal cortex, and (3) clusters of 

subpial AT in the cortex as an additional finding. Cases were classified according to 

the staging system suggested by McKee et al (2015). Hence, stage 1 cases were 

characterized by discrete foci of tau pathology in the cerebral cortex most commonly 

in superior or lateral frontal cortex, stage 2 by multiple foci of tau pathology with 

evidence of spread to superficial adjacent cortex, the medial temporal lobe being 

largely spared, stage 3 by substantial spread of pathology in frontal, insular, temporal, 

and parietal cortex with pathology also affecting the amygdala, hippocampus, and 

entorhinal cortex, and stage 4 by widespread severe tau pathology affecting most 

regions of the cerebral cortex and medial temporal lobe with the possible exception of 

the occipital cortex. The majority of the eleven CTE cases studied were classified as 

stage 3 or 4. The neuropathology of CTE frequently overlaps with that of common 

neurodegenerative diseases such as AD (Maroon et al. 2013) (Table 1). Hence, one 

case was diagnosed as ‘pure’ CTE without any associated co-pathology but the 
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remaining cases exhibited one or more co-pathologies most commonly ADNC (N = 

7), primary age-related tauopathy (PART) (N = 2) (Dickson 2009; Crary et al. 2014), 

hippocampal sclerosis (HS) (N = 4) (Josephs et al. 2006), TDP-43 proteinopathy (N = 

8), or argyrophilic grain disease (AGD) (N = 1). National Institute on Aging-

Alzheimer’s (NIA-AA) association guidelines ‘ABC’ scores of the CTE cases equated 

to ‘not AD’ - ‘intermediate’ level of AD (Hyman et al 2012). PART is a new 

neuropathological entity characterized by tau pathology typically in the temporal lobe 

and is associated with aging independent of amyloid pathology (Dickson 2009; Crary 

et al. 2014). Hence, cases diagnosed as CTE were also designated as having PART 

according to the following criteria: (1) a diffuse cerebral atrophy was present most 

severe in the temporal lobe, (2) NFT were present in the medial temporal lobe, 

hippocampus, and amygdala, (3) extracellular ‘ghost’ tangles were present, and (4) 

sparse diffuse A deposits were present but with few NP (Dickson 2009; Crary et al 

2014). 

 

Neuropathology 

 

These studies were approved by the local Institute Review Board of Boston 

University and were carried out according to the 1995 Declaration of Helsinki (as 

modified in Edinburgh, 2000). After death, the next-of-kin provided written consent 

for brain removal and retention for research studies. Brains were fixed in 10% neutral 

buffered formalin for at least two weeks, paraffin-embedded, and sections cut at 6 

m. For this study, blocks were taken from: (1) frontal lobe to study the superior 

frontal gyrus (SFG) (BA 8,6), (2) temporal pole (TP) (BA 38,36), and (3) temporal 

lobe to study the superior temporal gyrus (STG) (BA 22), (4) entorhinal cortex (EC) 

(BA 28) at the level of the amygdala, and (5) medial temporal lobe (MTL) to study 

the subiculum, sector CA1 of the hippocampus (HC), and dentate gyrus (DG). 

Histologic stains included luxol fast blue in combination with hematoxylin and eosin 

(LHE) and a modified Bielschowsky silver impregnation. Immunohistochemistry was 

performed using the following antibodies: A42 (AB5078P; EMD Millipore, 

Billerica, MA, USA; 1:2000), phosphorylated tau (AT8, Pierce Endogen, Rockford, 

IL, USA; 1:2000), and phosphorylated TDP-43 (pTDP-43, pS409/410 mouse 

monoclonal; Cosmo Bio Co Ltd, Tokyo, Japan; 1:2000). Each slide was digitally 
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scanned and subsequently visualized on a PC using Aperio Image-Scope Software 

(Leica Biosystems Inc. Buffalo Grove, IL, USA) (Armstrong et al. 2016).  

 

Morphometry 

 

In each cortical gyrus (SFG, TP, STG, EC), variation in the densities of NFT, NT, 

DLG, AT, and NP were measured from crest to sulcus parallel to the pia mater, using 

250 x 50 µm sample fields arranged contiguously (Armstrong 2003a; Armstrong et al. 

2016). Sample fields were superimposed over the image using either the draw or 

rectangle options (minimum N = 32 fields) (Armstrong et al. 2016). The sample fields 

were located in the upper (approximating to laminae II/III) cortex, the region where 

the densest tau-pathology is observed in CTE (McKee et al. 2014; Armstrong et al. 

2016). The short edge of the sample field was orientated parallel with the pia mater 

and aligned with guidelines drawn on the section. Histological features were also 

studied in the subiculum (N = 16 fields) and in sector CA1 (N = 16 fields) the short 

dimension of the sample field being aligned with the alveus. In the DG, the pathology 

was quantified in the molecular and granule cell layer (N = 32 fields). NFT were 

present in the cytoplasm of larger cells with a distinct region of haematoxylin-positive 

cytoplasm while AT were either distinct cytoplasmic inclusions associated with 

larger, pale nuclei or resembled thorn-shaped astrocytes. NT were thread-like 

structures some of which were serpiginous, while small circular structures were 

identified as DLG (Armstrong et al. 2016). To quantify the frequency of the larger 

blood vessels in CTE, a dashed line was drawn across the image within each sample 

field parallel to the longer dimension of the field at a random location using the 

negative pen tool (F3). The frequency of contacts between the dashed lines and all 

major blood vessel profiles (>10 m in diameter) within the sample field was 

recorded (Armstrong, 2006a). 

 

Data analysis 

 

To determine the degree of clustering of the tau pathology, the data were analyzed by 

spatial pattern analysis (Armstrong 1993b, 1997, 2006b). Departure from a random 

distribution can be measured by calculating the variance/mean (V/M) ratio of the 

counts of individual histological features in the contiguous sample fields. If a feature 



 

7 

is randomly distributed, the number of samples containing 0, 1, 2, 3 … n, inclusions 

should correspond to a Poisson distribution and the V/M ratio should approximate to 

unity. A V/M ratio less than unity indicates a regular distribution and greater than 

unity a clumped or clustered distribution. If a feature is clustered, the mean size and 

distribution of the clusters can be obtained from counts of lesions in adjacent sample 

fields added together successively to provide data for increasing field sizes, e.g., 200 

x 1000 µm, 400 x 1000 µm, 800 x 1000 µm etc., up to a size limited by the total 

length of strip sampled. The V/M ratio is calculated at each field size. A V/M peak 

indicates the presence of regularly spaced clusters and location of the peak indicates 

mean cluster size, statistical significance of a V/M peak being tested using the ‘t’ 

distribution (Armstrong 1997). The frequencies of the different clustering patterns 

were compared using 2 contingency tables: (1) between cerebral cortex and 

subiculum/CA1/DG, (2) among different tau-immunoreactive pathologies, and (3) 

among cases. Spatial correlations between cluster size of the pathology and frequency 

of blood vessel contacts were tested using Pearson’s correlation coefficient (‘r’) 

(Armstrong 2003b).  

 

Results  

 

Fig 1 shows the typical tau-immunoreactive pathology in the TP of a case of CTE 

(Case A). Clusters of NFT are present in the upper laminae, apparently regularly 

distributed parallel to the pia mater, and are accompanied by DN and more widely 

distributed DLG.  

 

Examples of the spatial pattern analysis of the NFT, NT, and DLG in a single region 

of a case of CTE (Case 6, EC) are shown in Fig 2. NFT exhibited a V/M peak at a 

field size of 50 m suggesting a regular distribution of clusters of NFT, 50 m in 

diameter, distributed parallel to the pia mater. NT exhibited two V/M peaks at field 

sizes of 100 m and 400 m suggesting a regular distribution of clusters 50 m in 

diameter, aggregated into larger ‘superclusters’ 400 m in diameter. The DLG 

exhibited an increasing V/M with field size without reaching a peak, suggesting a 

large cluster of DLG, of at least 800 m in diameter. 
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The frequency of the different spatial patterns exhibited by the tau-immunoreactive 

pathology in all CTE regions and cases examined are summarized in Table 2. All 

features of the pathology were clustered, and in a proportion of regions, the clusters 

were regularly distributed parallel to the tissue boundary. This spatial pattern was 

observed in the cortex and in the subiculum/sector CA1/DG respectively in 15/42 

(36%) and 13/32 (41%) analyses of NFT, 26/40 (65%) and 16/32 (50%) of NT, 21/43 

(49%) and 22/33 (67%) of DLG, 7/28 (25%) and 1/5 (20%) of AT, and 1/3 (33%) and 

0/1 (0%) of NP. In a subset of cortical regions, the dimensions of the clusters were in 

the range 400 – 800 m. The frequencies of the different clustering patterns were 

similar in cerebral cortex and subiculum/CA1/DG. However, there were significant 

differences among tau pathologies, the NT and DLG exhibiting a greater frequency of 

regularly distributed clusters than the NFT. Clustering patterns were similar in the two 

cases with relatively little co-pathology, viz. ‘pure’ CTE (Case K) and CTE/PART 

(Case H) compared with all remaining cases and in those cases with and without 

associated ADNC or TDP-43 proteinopathy. No significant correlations were present 

between estimated cluster size and disease duration or sporting career length. In 

addition, there were no significant correlations between cluster sizes of the NFT, NT, 

and DLG and CTE stage. However, there were also positive correlations between the 

cluster size of the pathology and ADNC stage including NT in the SFG with ‘C’ (NP) 

stage (r = 0.77, P < 0.05) and between DLG in the EC with ‘B’ (NFT) stage (r = 0.65, 

P < 0.05). 

 

Similar spatial patterns of the NFT and NP were observed in cases of ADNC without 

CTE (Table 3). Hence, regular spaced clusters of the pathology were observed in the 

cortex and in the subiculum/sector CA1/DG respectively in 22/30 (73%) and 9/13 

(69%) analyses of NFT and 12/26 (46%) and 11/20 (55%) of NP. In addition, there 

were significant differences in spatial pattern between CTE and ADNC cases with 

AD cases having a significantly more clustered and CTE more frequent random and 

uniform distributions of the tau pathology (NFT 2  = 19.29, P > 0.001); NP 2 = 

9.80, P < 0.05). 

.  

Spatial correlations between the densities of tau-immunoreactive pathology and 

frequency of contacts with major blood vessel profiles in CTE are shown in Table 4. 

Significant positive spatial correlations with blood vessels were infrequent and 
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present in 14/132 (11%) of analyses, slightly better than chance, and included either 

the DN or DLG. Hence, in the majority of regions examined, clustering of the tau-

immunoreactive pathology along the gyrus from crest to sulcus was not spatially 

correlated with the presence of larger blood vessel profiles. 

 

Discussion 

 

Considerable variations in density of the tau-immunoreactive pathology were evident 

in both CTE and ADNC cases parallel to the tissue boundary in the upper laminae of 

the cortex and in the subiculum, sector CA1, and DG. Hence, caution is required in 

the interpretation of results especially of the CTE case given the large range of onset 

and trauma present. Frequently, the pathological features formed clusters and in a 

proportion of regions, the clusters were regularly distributed parallel to the pia mater, 

alveus, or edge of the DG granule cell layer. Similar clustering patterns were observed 

in ADNC cases without CTE and have also been reported previously in various 

tauopathies, e.g., NFT in AD (Armstrong 1993a), Pick bodies (PB) in PiD 

(Armstrong et al 1998a), neuronal cytoplasmic inclusions (NCI) in CBD (Armstrong 

et al 2009), and NFT in progressive supranuclear palsy (PSP) (Armstrong et al 

2007b). In addition, the clustering patterns were similar in the two CTE cases with 

relatively little co-pathology (CTE, CTE/PART), compared with the remaining cases 

with significant co-pathologies, and in cases with and without associated ADNC or 

TDP-43 proteinopathy. Hence, regular clustering of the tau-immunoreactive 

pathology is a feature of CTE and does not appear to depend on the presence of 

ADNC or TDP-43 co-pathology. 

 

Although the spatial patterns of the tau pathology are similar in CTE cases with and 

without ADNC, there are differences when compared to ADNC cases without CTE.  

Hence, NFT and NP were more frequently randomly or uniformly distributed in CTE 

but present more frequently in well-defined clusters in ADNC. These results suggest 

that the spatial pattern of the tau pathology in CTE with or without associated ADNC 

is different to that of ADNC alone. Hence, the presence of CTE makes a significant 

contribution to the tau pathology of these complex cases. 
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Previous studies of pathological features in a variety of disorders suggest two 

explanations for clustering especially when clusters are regularly spaced. First, A 

deposits in AD (Armstrong et al 1998b, Armstrong 2006a) and prion protein (PrPsc) 

deposits in Creutzfeldt-Jakob disease (CJD) (Armstrong 2009) are clustered around 

the major blood vessels. In the cortex, larger arterioles penetrate the pia at regular 

intervals and then extend vertically through the laminae reaching a maximum density 

in cortical laminae IV (Bell and Ball 1990) and giving rise to a more or less regular 

distribution of vessels in the upper laminae (Armstrong 2006a). Clustering of protein 

deposits around these vessels in AD suggests an impaired blood brain barrier could be 

involved in their formation. The present data, however, suggest little overall spatial 

correlation between the tau pathology and the location of major blood vessel profiles 

from the crest of the gyrus to the sulcus or in the subiculum, sector CA1, or DG. 

There may be two explanations for the overall lack of correlation. First, spatial 

correlations with blood vessels may be specific to certain brain regions. Hence, tau 

pathology in CTE frequently occurs at higher density in the sulcal depths compared 

with the crests and upper sides of the gyri (Kieman et al 2015, McKee et al 2015, 

Armstrong et al 2016). These differences in density are often most marked in frontal 

cortex where in some cases a marked perivascular distribution of NFT and especially 

AT are present (McKee et al 2013, 2015). Second, clustering of the tau-

immunoreactive pathology around larger blood vessels could be characteristic of the 

early stages of the pathology in CTE. As the disease develops, however, the pathology 

spreads to affect capillaries located between the major blood vessel profiles thus 

reducing the chance of detecting a spatial correlation due to the abundance of both tau 

inclusions and capillary profiles (Kawai et al 1990, Luthert and Williams 1991, 

Armstrong 2006a, 2009). 

 

Second, as in other tauopathies, clustering of the tau-immunoreactive pathology could 

be related to the degeneration of specific anatomical pathways. First, in a significant 

proportion of cortical gyri, the tau pathology, especially the NT, and DLG, was 

present in regularly distributed clusters. Many features of cortical architecture are 

similarly clustered, e.g., the cells of origin of the cortico-cortical pathways are 

clustered and occur in bands regularly distributed along the cortex parallel to the pia 

mater (Hiorns et al 1991). Second, individual bands of cells associated with the 

cortico-cortical pathways are approximately 400 – 1000 m in width depending on 
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region, and traverse the laminae in columns (Hiorns et al 1991, DeLacoste and White 

1993). In a proportion of gyri, the estimated widths of the clusters of tau pathology, 

measured parallel to the pia mater, were within this size range. Third, anatomically 

connected regions exhibited similar regularly distributed patterns of clusters e.g., in 

the EC and DG granule cells suggesting an association of the pathology and 

degeneration of the perforant path (Armstrong et al 2000). Hence, as in the other 

tauopathies, clustering of the tau pathology in CTE could be the result of the 

hypothesised ‘prion-like’ behaviour of tau and it’s spread through the brain via cell to 

cell transfer (Goedert et al 2010). Head trauma could therefore initiate damage to 

blood vessels, especially in sulci, resulting in cellular degeneration close to blood 

vessels and the formation of foci of pathogenic tau. Pathogenic tau could then spread 

through the brain along anatomical pathways as hypothesized in other tauopathies 

(Goedert et al 2010, Armstrong and Cairns 2012).  

 

In conclusion, the tau-immunoreactive pathology of CTE exhibits a clustering pattern 

typical of the tauopathies in which the clusters are often regularly distributed parallel 

to the tissue boundary. Similar types of spatial patterns of NFT and NP were also 

present in ADNC without CTE, but with some differences when compared with CTE. 

Although a marked perivascular distribution of the tau pathology can be observed 

affecting individual large vessels, especially in sulci; overall, the clustering patterns 

observed were not spatially related to the larger blood vessel profiles. Hence, local 

blood vessel damage in CTE could result in the formation of pathologic tau in regions 

close to blood vessels which then exhibits further neuroanatoamical spread to affect a 

range of brain areas. 
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Table 1 Demographic and neuropathology features of the chronic traumatic 

encephalopathy (CTE) cases including National Institute on Aging-Alzheimer’s 

association guidelines NIA-AA) ‘ABC’ scores (A = Amyloid-beta, B = 

Neurofibrillary tangles, C = Neuritic plaques) 

_____________________________________________________________________ 

Case Age* Onset Trauma Career  Pathology CTE  A B C

 (yrs) (yrs)   length   stage 

 (yrs) 

_____________________________________________________________________ 

A 75 65 10/2  18 CTE,ADNC, 3 A3 B2 C1 

HS,TDP-43 

B 70 66 10/1  11 CTE,ADNC, 3 A0 B2 C0 

TDP-43 

C 60 55 1/1  26 CTE,HS, 2 A0 B1 C0 

TDP-43 

D 65 56 -  19 CTE,ADNC, 4 A2 B2 C1 

HS,TDP-43 

E 70 61 3/0  21 CTE,TDP-43, 3 A0 B1 C0 

PART, AGD 

F 80 67 F  12 CTE,ADNC, 4 A2 B2 C0 

HS,TDP-43 

G 80 38 -  18 CTE,ADNC, 4 A3 B2 C1 

TDP-43 

H 65 55 50/1  17 CTE/PART 3 A0 B2 C0 

I 70 61 10/1  19 CTE,ADNC, 3 A2 B1 C1 

TDP-43 

J 60 54 25/1  21 CTE,ADNC, 4 A3 B2 C0 

TDP-43 

K 70 45 F  20 CTE  4 A0 B2 C0 

 

ADNC 

A 90 85 -  - ADNC   A3 B2   C1 

B 70 67 -  - ADNC/TDP-43 A2 B2 C1 

C 80 75 -  - ADNC/AGD  A0 B1 C0 
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D 85 73 -  - ADNC/VD  A3 B2 C1 

E 90 81 -  - ADNC/TDP-43 A2 B1 C1 

F 70 56 -  - ADNC   A1 B2 C1 

G 70 62 -  - ADNC   A3 B2 C1 

_____________________________________________________________________ 

Abbreviations: F = Frequent, ADNC = Alzheimer’s disease neuropathologic change, 

HS = Hippocampal sclerosis, TDP-43 = Transactive response (TAR) DNA-binding 

protein of 43kDa, PART = Primary age-related tauopathy, AGD = Argyrophilic grain 

disease, VD = Vascular disease, * Age rounded to nearest 5-year age interval to 

protect subject identities 
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Table 2 Frequency of spatial patterns (R = Random distribution, Reg = Regular or 

uniform distribution, Reg Clusters = Regularly distributed clusters of inclusions) of 

the tau-immunoreactive neurofibrillary tangles (NFT), dystrophic neurites (DN), dot-

like grains (DLG), astrocytic tangles (AT), and neuritic plaques (NP) in the cerebral 

cortex and hippocampus in 11 cases of chronic traumatic encephalopathy (CTE). 

Figures in parentheses in column 5 indicate percentage of regions investigated in 

which cluster size was in the range 400 – 800 m. 

_____________________________________________________________________ 

Pathology Region  R   Reg Reg Clusters Large clusters 

_____________________________________________________________________ 

NFT  Cortex  11  11 15 (6)  5 

  Sub/HC/DG 5  7 13 (0)  7 

NT  Cortex  3  1 26 (12)  10 

  Sub/HC/DG 5  1 16 (0)  10 

DLG  Cortex  2  0 21 (4)  20 

  Sub/HC/DG 0  1 22 (0)  10 

AT  Cortex  13  5 7 (6)  3 

  Sub/HC/DG 4  0 1 (0)  0 

NP  Cortex  2  0 1 (0)  0 

  Sub/HC/DG 0  1 0  0 

_____________________________________________________________________ 

Chi-square (2) contingency tests: Cortex vs Sub/HC/DG NFT 2  = 6.68 (4DF, P > 

0.05), NT 2 = 10.72 (4DF, P < 0.05), DLG 2 = 21.25 (4DF, P < 0.001), AT 2  = 

3.80 (4DF, P > 0.05); Among pathologies: Cortex 2 = 71.20 (16DF, P < 0.001), 

HC/Sub 2 = 43.82 (12DF, P < 0.001); Among cases: CTE + CTE/PART compared 

with remaining cases NFT 2  = 0.59 (3DF, P > 0.05), NT 2 = 4.73 (3DF, P > 0.05), 

DLG 2 = 1.29 (3DF, P > 0.05), AT 2  = 4.68 (3DF, P > 0.05); CTE cases with or 

without ADNC: NFT 2  = 3.53 (3DF, P > 0.05), NT 2 = 2.94 (3DF, P > 0.05), DLG 

2 = 1.73 (3DF, P > 0.05), AT 2  = 1.73 (3DF, P > 0.05); CTE cases with and 

without TDP-43 NFT 2  = 0.18 (3DF, P > 0.05), NT 2 = 1.62 (3DF, P > 0.05), DLG 

2 = 1.35 (3DF, P > 0.05), AT 2  = 6.28 (3DF, P > 0.05) 
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Table 3 Frequency of spatial patterns (R = Random distribution, Reg = Regular or 

uniform distribution, Reg Clusters = Regularly distributed clusters of inclusions) of 

the tau-immunoreactive neurofibrillary tangles (NFT) and neuritic plaques (NP) in the 

cerebral cortex and hippocampus in seven cases of Alzheimer’s disease 

neuropathologic change (ADNC) without CTE. Figures in parentheses in column 5 

indicate percentage of regions investigated in which cluster size was in the range 400 

– 800 m. 

_____________________________________________________________________ 

Pathology Region  R   Reg Reg Clusters Large clusters 

_____________________________________________________________________ 

NFT  Cortex  1  0 22 (12)  7 

  Sub/HC/DG 3  0 9 (0)  1 

NP  Cortex  1  1 12 (8)  12 

  Sub/HC/DG 3  1 11 (0)  5 

_____________________________________________________________________ 

Chi-square (2) contingency tests: CTE vs ADNC NFT 2 = 19.29 (3DF, P > 0.001), 

NP 2 = 9.80 (3DF, P < 0.05) 
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Table 4 Frequency of significant spatial correlations between the tau-immunoreactive 

neurofibrillary tangles (NFT), dystrophic neurites (DN), dot-like grains (DLG), 

astrocytic tangles (AT), and neuritic plaques (NP) and larger blood vessel profiles (> 

10 m diameter) along the sides of gyri in the upper laminae of the cerebral cortex in 

11 cases of chronic traumatic encephalopathy (CTE). 

_____________________________________________________________________ 

Correlation  NFT  NT  DLG  AT   NP 

_____________________________________________________________________ 

Positive  2  3  9  0  0 

 

Negative  2  0  0  0  0 

 

Not significant  40  41  35  37  5 

 

_____________________________________________________________________ 
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Legends to figure 

 

Fig 1 The tau-immunoreactive pathology at the temporal pole (TP) of a case of 

chronic traumatic encephalopathy (CTE) (Case A) showing clusters of neurofibrillary 

tangles (NFT) apparently regularly distributed parallel to the pia mater, dystrophic 

neurites (DN), and widespread dot-like grains (DLG), tau immunohistochemistry 

(AT8), haematoxylin 
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Fig 2 Examples of the spatial patterns exhibited by neurofibrillary tangles (NFT), 

dystrophic neurites (DN), and dot-like grains (DLG) in a case  of chronic traumatic 

encephalopathy (CTE) (Case 6, entorhinal cortex) 

 

 

 

 

 

 

 


