164 research outputs found

    Potential climatic transitions with profound impact on Europe

    Get PDF
    We discuss potential transitions of six climatic subsystems with large-scale impact on Europe, sometimes denoted as tipping elements. These are the ice sheets on Greenland and West Antarctica, the Atlantic thermohaline circulation, Arctic sea ice, Alpine glaciers and northern hemisphere stratospheric ozone. Each system is represented by co-authors actively publishing in the corresponding field. For each subsystem we summarize the mechanism of a potential transition in a warmer climate along with its impact on Europe and assess the likelihood for such a transition based on published scientific literature. As a summary, the β€˜tipping’ potential for each system is provided as a function of global mean temperature increase which required some subjective interpretation of scientific facts by the authors and should be considered as a snapshot of our current understanding. <br/

    The associations between serum brain-derived neurotrophic factor, potential confounders, and cognitive decline: A longitudinal study

    Get PDF
    Brain-derived neurotrophic factor (BDNF) plays a role in the maintenance and function of neurons. Although persons with Alzheimer's disease have lower cortical levels of BDNF, evidence regarding the association between circulating BDNF and cognitive function is conflicting. We sought to determine the correlates of BDNF level and whether BDNF level was prospectively associated with cognitive decline in healthy older adults. We measured serum BDNF near baseline in 912 individuals. Cognitive status was assessed repeatedly with the modified Mini-Mental Status Examination and the Digit Symbol Substitution test over the next 10 years. We evaluated the association between BDNF and cognitive decline with longitudinal models. We also assessed the association between BDNF level and demographics, comorbidities and health behaviors. We found an association between serum BDNF and several characteristics that are also associated with dementia (race and depression), suggesting that future studies should control for these potential confounders. We did not find evidence of a longitudinal association between serum BDNF and subsequent cognitive test trajectories in older adults, although we did identify a potential trend toward a cross-sectional association. Our results suggest that serum BDNF may have limited utility as a biomarker of prospective cognitive decline

    Dysregulated Recruitment of the Histone Methyltransferase EZH2 to the Class II Transactivator (CIITA) Promoter IV in Breast Cancer Cells

    Get PDF
    One mechanism frequently utilized by tumor cells to escape immune system recognition and elimination is suppression of cell surface expression of Major Histocompatibility Class II (MHC II) molecules. Expression of MHC II is regulated primarily at the level of transcription by the Class II Transactivator, CIITA, and decreased CIITA expression is observed in multiple tumor types. We investigate here contributions of epigenetic modifications to transcriptional silencing of CIITA in variants of the human breast cancer cell line MDA MB 435. Significant increases in histone H3 lysine 27 trimethylation upon IFN-Ξ³ stimulation correlate with reductions in transcription factor recruitment to the interferon-Ξ³ inducible CIITA promoter, CIITApIV, and with significantly increased CIITApIV occupancy by the histone methyltransferase enhancer of zeste homolog 2 (EZH2). Most compelling is evidence that decreased expression of EZH2 in MDA MB 435 variants results in significant increases in CIITA and HLA-DRA mRNA expression, even in the absence of interferon-Ξ³ stimulation, as well as increased cell surface expression of MHC II. Together, these data add mechanistic insight to prior observations of increased EZH2 expression and decreased CIITA expression in multiple tumor types

    Urinary Ξ±1-Antichymotrypsin: A Biomarker of Prion Infection

    Get PDF
    The occurrence of blood-borne prion transmission incidents calls for identification of potential prion carriers. However, current methods for intravital diagnosis of prion disease rely on invasive tissue biopsies and are unsuitable for large-scale screening. Sensitive biomarkers may help meeting this need. Here we scanned the genome for transcripts elevated upon prion infection and encoding secreted proteins. We found that Ξ±1-antichymotrypsin (Ξ±1-ACT) was highly upregulated in brains of scrapie-infected mice. Furthermore, Ξ±1-ACT levels were dramatically increased in urine of patients suffering from sporadic Creutzfeldt-Jakob disease, and increased progressively throughout the disease. Increased Ξ±1-ACT excretion was also found in cases of natural prion disease of animals. Therefore measurement of urinary Ξ±1-ACT levels may be useful for monitoring the efficacy of therapeutic regimens for prion disease, and possibly also for deferring blood and organ donors that may be at risk of transmitting prion infections

    Genome-wide examination of the transcriptional response to ecdysteroids 20-hydroxyecdysone and ponasterone A in Drosophila melanogaster

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The 20-hydroxyecdysone (20E) hierarchy of gene activation serves as an attractive model system for studying the mode of steroid hormone regulated gene expression and development. Many structural analogs of 20E exist in nature and among them the plant-derived ponasterone A (PoA) is the most potent. PoA has a higher affinity for the 20E nuclear receptor, composed of the ecysone receptor (EcR) and Ultraspiracle proteins, than 20E and a comparison of the genes regulated by these hormones has not been performed. Furthermore, in <it>Drosophila </it>different cell types elicit different morphological responses to 20E yet the cell type specificity of the 20E transcriptional response has not been examined on a genome-wide scale. We aim to characterize the transcriptional response to 20E and PoA in <it>Drosophila </it>Kc cells and to 20E in salivary glands and provide a robust comparison of genes involved in each response.</p> <p>Results</p> <p>Our genome-wide microarray analysis of Kc167 cells treated with 20E or PoA revealed that far more genes are regulated by PoA than by 20E (256 vs 148 respectively) and that there is very little overlap between the transcriptional responses to each hormone. Interestingly, genes induced by 20E relative to PoA are enriched in functions related to development. We also find that many genes regulated by 20E in Kc167 cells are not regulated by 20E in salivary glands of wandering 3<sup>rd </sup>instar larvae and we show that 20E-induced levels of <it>EcR </it>isoforms <it>EcR-RA, ER-RC</it>, and <it>EcR-RD/E </it>differ between Kc cells and salivary glands suggesting a possible cause for the observed differences in 20E-regulated gene transcription between the two cell types.</p> <p>Conclusions</p> <p>We report significant differences in the transcriptional responses of 20E and PoA, two steroid hormones that differ by only a single hydroxyl group. We also provide evidence that suggests that PoA induced death of non-adapted insects may be related to PoA regulating different set of genes when compared to 20E. In addition, we reveal large differences between Kc cells and salivary glands with regard to their genome-wide transcriptional response to 20E and show that the level of induction of certain EcR isoforms differ between Kc cells and salivary glands. We hypothesize that the differences in the transcriptional response may in part be due to differences in the EcR isoforms present in different cell types.</p

    cAMP/PKA signaling balances respiratory activity with mitochondria dependent apoptosis via transcriptional regulation

    Get PDF
    Background Appropriate control of mitochondrial function, morphology and biogenesis are crucial determinants of the general health of eukaryotic cells. It is therefore imperative that we understand the mechanisms that co-ordinate mitochondrial function with environmental signaling systems. The regulation of yeast mitochondrial function in response to nutritional change can be modulated by PKA activity. Unregulated PKA activity can lead to the production of mitochondria that are prone to the production of ROS, and an apoptotic form of cell death. Results We present evidence that mitochondria are sensitive to the level of cAMP/PKA signaling and can respond by modulating levels of respiratory activity or committing to self execution. The inappropriate activation of one of the yeast PKA catalytic subunits, Tpk3p, is sufficient to commit cells to an apoptotic death through transcriptional changes that promote the production of dysfunctional, ROS producing mitochondria. Our data implies that cAMP/PKA regulation of mitochondrial function that promotes apoptosis engages the function of multiple transcription factors, including HAP4, SOK2 and SCO1. Conclusions We propose that in yeast, as is the case in mammalian cells, mitochondrial function and biogenesis are controlled in response to environmental change by the concerted regulation of multiple transcription factors. The visualization of cAMP/TPK3 induced cell death within yeast colonies supports a model that PKA regulation plays a physiological role in coordinating respiratory function and cell death with nutritional status in budding yeast

    ARGONAUTE10 and ARGONAUTE1 Regulate the Termination of Floral Stem Cells through Two MicroRNAs in Arabidopsis

    Get PDF
    Stem cells are crucial in morphogenesis in plants and animals. Much is known about the mechanisms that maintain stem cell fates or trigger their terminal differentiation. However, little is known about how developmental time impacts stem cell fates. Using Arabidopsis floral stem cells as a model, we show that stem cells can undergo precise temporal regulation governed by mechanisms that are distinct from, but integrated with, those that specify cell fates. We show that two microRNAs, miR172 and miR165/166, through targeting APETALA2 and type III homeodomain-leucine zipper (HD-Zip) genes, respectively, regulate the temporal program of floral stem cells. In particular, we reveal a role of the type III HD-Zip genes, previously known to specify lateral organ polarity, in stem cell termination. Both reduction in HD-Zip expression by over-expression of miR165/166 and mis-expression of HD-Zip genes by rendering them resistant to miR165/166 lead to prolonged floral stem cell activity, indicating that the expression of HD-Zip genes needs to be precisely controlled to achieve floral stem cell termination. We also show that both the ubiquitously expressed ARGONAUTE1 (AGO1) gene and its homolog AGO10, which exhibits highly restricted spatial expression patterns, are required to maintain the correct temporal program of floral stem cells. We provide evidence that AGO10, like AGO1, associates with miR172 and miR165/166 in vivo and exhibits β€œslicer” activity in vitro. Despite the common biological functions and similar biochemical activities, AGO1 and AGO10 exert different effects on miR165/166 in vivo. This work establishes a network of microRNAs and transcription factors governing the temporal program of floral stem cells and sheds light on the relationships among different AGO genes, which tend to exist in gene families in multicellular organisms

    Pharmacologic stem cell based intervention as a new approach to osteoporosis treatment in rodents

    Get PDF
    Background: Osteoporosis is the most prevalent skeletal disorder, characterized by a low bone mineral density (BMD) and bone structural deterioration, leading to bone fragility fractures. Accelerated bone resorption by osteoclasts has been established as a principal mechanism in osteoporosis. However, recent experimental evidences suggest that inappropriate apoptosis of osteoblasts/osteocytes accounts for, at least in part, the imbalance in bone remodeling as occurs in osteoporosis. The aim of this study is to examine whether aspirin, which has been reported as an effective drug improving bone mineral density in human epidemiology studies, regulates the balance between bone resorption and bone formation at stem cell levels. Methods and Findings: We found that T cell-mediated bone marrow mesenchymal stem cell (BMMSC) impairment plays a crucial role in ovariectomized-induced osteoporosis. Ex vivo mechanistic studies revealed that T cell-mediated BMMSC impairment was mainly attributed to the apoptosis of BMMSCs via the Fas/Fas ligand pathway. To explore potential of using pharmacologic stem cell based intervention as an approach for osteoporosis treatment, we selected ovariectomy (OVX)- induced ostoeporosis mouse model to examine feasibility and mechanism of aspirin-mediated therapy for osteoporosis. We found that aspirin can inhibit T cell activation and Fas ligand induced BMMSC apoptosis in vitro. Further, we revealed that aspirin increases osteogenesis of BMMSCs by aiming at telomerase activity and inhibits osteoclast activity in OVX mice, leading to ameliorating bone density. Conclusion: Our findings have revealed a novel osteoporosis mechanism in which activated T cells induce BMMSC apoptosis via Fas/Fas ligand pathway and suggested that pharmacologic stem cell based intervention by aspirin may be a new alternative in osteoporosis treatment including activated osteoblasts and inhibited osteoclasts.Takayoshi Yamaza, Yasuo Miura, Yanming Bi, Yongzhong Liu, Kentaro Akiyama, Wataru Sonoyama, Voymesh Patel, Silvio Gutkind, Marian Young, Stan Gronthos, Anh Le, Cun-Yu Wang, WanJun Chen and Songtao Sh
    • …
    corecore