731 research outputs found

    Dynamic changes in heparan sulfate during muscle differentiation and ageing regulate myoblast cell fate and FGF2 signalling

    Get PDF
    Satellite cells (SCs) are skeletal muscle stem cells residing quiescent around healthy muscle fibres. In response to injury or disease SCs activate, proliferate and eventually differentiate and fuse to one another to form new muscle fibres, or to existing damaged fibres to repair them. The sulfated polysaccharide heparan sulfate (HS) is a highly variable biomolecule known to play key roles in the regulation of cell fate decisions, though the changes that muscle HS undergoes during SC differentiation are unknown. Here we show that the sulfation levels of HS increase during SC differentiation; more specifically, we observe an increase in 6-O and 2-O-sulfation in N-acetylated disaccharides. Interestingly, a specific increase in 6-O sulfation is also observed in the heparanome of ageing muscle, which we show leads to promotion of FGF2 signalling and satellite cell proliferation, suggesting a role for the heparanome dynamics in age-associated loss of quiescence. Addition of HS mimetics to differentiating SC cultures results in differential effects: an oversulfated HS mimetic increases differentiation and inhibits FGF2 signalling, a known major promoter of SC proliferation and inhibitor of differentiation. In contrast, FGF2 signalling is promoted by an N-acetylated HS mimetic, which inhibits differentiation and promotes SC expansion. We conclude that the heparanome of SCs is dynamically regulated during muscle differentiation and ageing, and that such changes might account for some of the phenotypes and signalling events that are associated with these processes

    Enrichment of Two Isomeric Heparin Oligosaccharides Exhibiting Different Affinities toward Monocyte Chemoattractant Protein-1

    Get PDF
    Chemokine-GAG interactions are crucial to facilitate chemokine immobilization, resulting in the formation of chemokine gradients that guide cell migration. Here we demonstrate chromatographic isolation and purification of two heparin hexasaccharide isomers that interact with the oligomeric chemokine Monocyte Chemoattractant Protein-1 (MCP-1)/CCL2 with different binding affinities. The sequences of these two hexasaccharides were deduced from unique MS/MS product ions and HPLC compositional analysis. Ion mobility mass spectrometry (IM-MS) showed that the two isolated oligosaccharides have different conformations and both displayed preferential binding for one of the two distinct conformations known for MCP-1 dimers. A significant shift in arrival time distribution of close to 70 Ã…2 was observed, indicating a more compact protein:hexasaccharide conformation. Clear differences in the MS spectra between bound and unbound protein allowed calculation of Kd values from the resulting data. The structural difference between the two hexasaccharides was defined as the differential location of a single sulfate at either C-6 of glucosamine or C-2 of uronic acid in the reducing disaccharide, resulting in a 200-fold difference in binding affinity for MCP-1. These data indicate sequence specificity for high affinity binding, supporting the view that sulfate position, and not simply the number of sulfates, is important for heparan sulfate protein binding

    Heparan sulfate phage display antibodies recognise epitopes defined by a combination of sugar sequence and cation binding.

    Get PDF
    Phage display antibodies are widely used to follow heparan sulfate (HS) expression in tissues and cells. We demonstrate by ELISA, that cations alter phage display antibody binding profiles to HS and this is mediated by changes in polysaccharide conformation, demonstrated by circular dichroism spectroscopy. Native HS structures, expressed on the cell surfaces of neuroblastoma and fibroblast cells, also exhibited altered antibody binding profiles following exposure to low mM concentrations of these cations. Phage display antibodies recognise conformationally-defined HS epitopes, rather than sequence alone, as has been assumed, and resemble proteins in being sensitive to changes in both charge distribution and conformation following binding of cations to HS polysaccharides

    Heparin Isomeric Oligosaccharide Separation Using Volatile Salt Strong Anion Exchange Chromatography

    Get PDF
    The complexity of heparin and heparan sulfate saccharides makes their purification, including many isomeric structures, very challenging and is a bottleneck for structure–activity studies. High-resolution separations have been achieved by strong anion exchange (SAX) chromatography on Propac PA1 and cetyltrimethylammonium (CTA)-C18 silica columns; however, these entail subsequent desalting methodologies and consequent sample losses and are incompatible with orthogonal chromatography methodologies and, in particular, mass spectrometry. Here, we present the CTA-SAX purification of heparin oligosaccharides using volatile salt (VS) buffer. In VSCTA-SAX, the use of ammonium bicarbonate buffer for elution improves resolution through both weaker dissociation and conformational coordination of the ammonium across the sulfate groups. Using ion mobility mass spectrometry, we demonstrate that isomeric structures have different structural conformations, which makes chromatographic separation achievable. Resolution of such structures is improved compared to standard SAX methods, and in addition, VSCTA-SAX provides an orthogonal method to isolate saccharides with higher purity. Because ammonium bicarbonate is used, the samples can be evaporated rather than desalted, preventing substantial sample loss and allowing more effective subsequent analysis by electrospray mass spectrometry. We conclude that VSCTA-SAX is a powerful new tool that helps address the difficult challenge of heparin/heparan sulfate saccharide separation and will enhance structure–activity studies

    Orientation Sensitivity at Different Stages of Object Processing: Evidence from Repetition Priming and Naming

    Get PDF
    An ongoing debate in the object recognition literature centers on whether the shape representations used in recognition are coded in an orientation-dependent or orientation-invariant manner. In this study, we asked whether the nature of the object representation (orientation-dependent vs orientation-invariant) depends on the information-processing stages tapped by the task

    Characterization of Nonjunctional Hemichannels in Caterpillar Cells

    Get PDF
    Recent studies have demonstrated that hemichannels, which form gap junctions when paired from apposing cells, may serve additional roles when unpaired including cell adhesion and paracrine communication. Hemichannels in mammals are formed by connexins or pannexins, while in insects they are formed by pannexin homologues termed innexins. The formation of functional gap junctions by insect innexins has been established, although their ability to form functional nonjunctional hemichannels has not been reported. Here the characteristics of nonjunctional hemichannels were examined in three lepidopteran cell types, two cell lines (High Five and Sf9) and explanted hemocytes from Heliothis virescens (Fabricius) (Lepidoptera: Noctuidae). Selective fluorescent dye uptake by hemichannels was observed in a significant minority of cells, using fluorescence microscopy and flow cytometry. Carbenoxelone, an inhibitor of mammalian junctions, disrupted dye uptake, while flufenamic acid and mefloquine did not. The presence of Ca2+ and Mg2+ in the media increased hemichannel activity. Additionally, lipopolysaccharide, a stimulator of immune activity in lepidopterans, decreased dye uptake. These results demonstrate for the first time the activity of nonjunctional hemichannels in insect cells, as well as pharmacological tools to manipulate them. These results will facilitate the further examination of the role of innexins and nonjunctional hemichannels in insect cell biology, including paracrine signaling, and comparative studies of mammalian pannexins and insect innexins

    Heparan sulfate and heparin interactions with proteins.

    Get PDF
    Heparan sulfate (HS) polysaccharides are ubiquitous components of the cell surface and extracellular matrix of all multicellular animals, whereas heparin is present within mast cells and can be viewed as a more sulfated, tissuespecific, HS variant. HS and heparin regulate biological processes through interactions with a large repertoire of proteins. Owing to these interactions and diverse effects observed during in vitro, ex vivo and in vivo experiments, manifold biological/pharmacological activities have been attributed to them. The properties that have been thought to bestow protein binding and biological activity upon HS and heparin vary from high levels of sequence specificity to a dependence on charge. In contrast to these opposing opinions, we will argue that the evidence supports both a level of redundancy and a degree of selectivity in the structure–activity relationship. The relationship between this apparent redundancy, the multi-dentate nature of heparin and HS polysaccharide chains, their involvement in protein networks and the multiple binding sites on proteins, each possessing different properties, will also be considered. Finally, the role of cations in modulating HS/heparin activity will be reviewed and some of the implications for structure–activity relationships and regulation will be discussed

    Challenges of caring for children with mental disorders: Experiences and views of caregivers attending the outpatient clinic at Muhimbili National Hospital, Dar es Salaam - Tanzania

    Get PDF
    It is estimated that world-wide up to 20 % of children suffer from debilitating mental illness. Mental disorders that pose a significant concern include learning disorders, hyperkinetic disorders (ADHD), depression, psychosis, pervasive development disorders, attachment disorders, anxiety disorders, conduct disorder, substance abuse and eating disorders. Living with such children can be very stressful for caregivers in the family. Therefore, determination of challenges of living with these children is important in the process of finding ways to help or support caregivers to provide proper care for their children. The purpose of this study was to explore the psychological and emotional, social, and economic challenges that parents or guardians experience when caring for mentally ill children and what they do to address or deal with them. A qualitative study design using in-depth interviews and focus group discussions was applied. The study was conducted at the psychiatric unit of Muhimbili National Hospital in Tanzania. Two focus groups discussions (FGDs) and 8 in-depth interviews were conducted with caregivers who attended the psychiatric clinic with their children. Data analysis was done using content analysis. The study revealed psychological and emotional, social, and economic challenges caregivers endure while living with mentally ill children. Psychological and emotional challenges included being stressed by caring tasks and having worries about the present and future life of their children. They had feelings of sadness, and inner pain or bitterness due to the disturbing behaviour of the children. They also experienced some communication problems with their children due to their inability to talk. Social challenges were inadequate social services for their children, stigma, burden of caring task, lack of public awareness of mental illness, lack of social support, and problems with social life. The economic challenges were poverty, child care interfering with various income generating activities in the family, and extra expenses associated with the child's illness. Caregivers of mentally ill children experience various psychological and emotional, social, and economic challenges. Professional assistance, public awareness of mental illnesses in children, social support by the government, private sector, and non-governmental organizations (NGOs) are important in addressing these challenges

    Systematic review and meta-analysis of the diagnostic accuracy of ultrasonography for deep vein thrombosis

    Get PDF
    Background Ultrasound (US) has largely replaced contrast venography as the definitive diagnostic test for deep vein thrombosis (DVT). We aimed to derive a definitive estimate of the diagnostic accuracy of US for clinically suspected DVT and identify study-level factors that might predict accuracy. Methods We undertook a systematic review, meta-analysis and meta-regression of diagnostic cohort studies that compared US to contrast venography in patients with suspected DVT. We searched Medline, EMBASE, CINAHL, Web of Science, Cochrane Database of Systematic Reviews, Cochrane Controlled Trials Register, Database of Reviews of Effectiveness, the ACP Journal Club, and citation lists (1966 to April 2004). Random effects meta-analysis was used to derive pooled estimates of sensitivity and specificity. Random effects meta-regression was used to identify study-level covariates that predicted diagnostic performance. Results We identified 100 cohorts comparing US to venography in patients with suspected DVT. Overall sensitivity for proximal DVT (95% confidence interval) was 94.2% (93.2 to 95.0), for distal DVT was 63.5% (59.8 to 67.0), and specificity was 93.8% (93.1 to 94.4). Duplex US had pooled sensitivity of 96.5% (95.1 to 97.6) for proximal DVT, 71.2% (64.6 to 77.2) for distal DVT and specificity of 94.0% (92.8 to 95.1). Triplex US had pooled sensitivity of 96.4% (94.4 to 97.1%) for proximal DVT, 75.2% (67.7 to 81.6) for distal DVT and specificity of 94.3% (92.5 to 95.8). Compression US alone had pooled sensitivity of 93.8 % (92.0 to 95.3%) for proximal DVT, 56.8% (49.0 to 66.4) for distal DVT and specificity of 97.8% (97.0 to 98.4). Sensitivity was higher in more recently published studies and in cohorts with higher prevalence of DVT and more proximal DVT, and was lower in cohorts that reported interpretation by a radiologist. Specificity was higher in cohorts that excluded patients with previous DVT. No studies were identified that compared repeat US to venography in all patients. Repeat US appears to have a positive yield of 1.3%, with 89% of these being confirmed by venography. Conclusion Combined colour-doppler US techniques have optimal sensitivity, while compression US has optimal specificity for DVT. However, all estimates are subject to substantial unexplained heterogeneity. The role of repeat scanning is very uncertain and based upon limited data
    • …
    corecore