6,080 research outputs found
Community-based control of a neglected tropical disease: the mossy foot treatment and prevention association
Podoconiosis (endemic non-filarial elephantiasis, also known as mossy foot) is a non-communicable disease now found exclusively in the tropics, caused by the conjunction of environmental, genetic, and economic factors. Silicate particles formed by the disintegration of lava in areas of high altitude (over 1,000 m) and seasonal rainfall (over 1,000 mm per annum) penetrate the skin of barefoot subsistence farmers, and in susceptible individuals cause lymphatic blockage and subsequent elephantiasis [1]. Although an estimated one million Ethiopians (of a total population of 77 million) are afflicted with podoconiosis [2], which creates a huge economic burden in endemic areas [3], no national policy has yet been developed to control or prevent the condition, and most affected communities remain unaware of treatment options
An observational study of patient characteristics associated with the mode of admission to acute stroke services in North East, England
Objective
Effective provision of urgent stroke care relies upon admission to hospital by emergency ambulance and may involve pre-hospital redirection. The proportion and characteristics of patients who do not arrive by emergency ambulance and their impact on service efficiency is unclear. To assist in the planning of regional stroke services we examined the volume, characteristics and prognosis of patients according to the mode of presentation to local services.
Study design and setting
A prospective regional database of consecutive acute stroke admissions was conducted in North East, England between 01/09/10-30/09/11. Case ascertainment and transport mode were checked against hospital coding and ambulance dispatch databases.
Results
Twelve acute stroke units contributed data for a mean of 10.7 months. 2792/3131 (89%) patients received a diagnosis of stroke within 24 hours of admission: 2002 arrivals by emergency ambulance; 538 by private transport or non-emergency ambulance; 252 unknown mode. Emergency ambulance patients were older (76 vs 69 years), more likely to be from institutional care (10% vs 1%) and experiencing total anterior circulation symptoms (27% vs 6%). Thrombolysis treatment was commoner following emergency admission (11% vs 4%). However patients attending without emergency ambulance had lower inpatient mortality (2% vs 18%), a lower rate of institutionalisation (1% vs 6%) and less need for daily carers (7% vs 16%). 149/155 (96%) of highly dependent patients were admitted by emergency ambulance, but none received thrombolysis.
Conclusion
Presentations of new stroke without emergency ambulance involvement were not unusual but were associated with a better outcome due to younger age, milder neurological impairment and lower levels of pre-stroke dependency. Most patients with a high level of pre-stroke dependency arrived by emergency ambulance but did not receive thrombolysis. It is important to be aware of easily identifiable demographic groups that differ in their potential to gain from different service configurations
Seagrass can mitigate negative ocean acidification effects on calcifying algae
The ultimate effect that ocean acidification (OA) and warming will have on the physiology of calcifying algae is still largely uncertain. Responses depend on the complex interactions between seawater chemistry, global/local stressors and species-specific physiologies. There is a significant gap regarding the effect that metabolic interactions between coexisting species may have on local seawater chemistry and the concurrent effect of OA. Here, we manipulated CO2 and temperature to evaluate the physiological responses of two common photoautotrophs from shallow tropical marine coastal ecosystems in Brazil: the calcifying alga Halimeda cuneata, and the seagrass Halodule wrightii. We tested whether or not seagrass presence can influence the calcification rate of a widespread and abundant species of Halimeda under OA and warming. Our results demonstrate that under elevated CO2, the high photosynthetic rates of H. wrightii contribute to raise H. cuneata calcification more than two-fold and thus we suggest that H. cuneata populations coexisting with H. wrightii may have a higher resilience to OA conditions. This conclusion supports the more general hypothesis that, in coastal and shallow reef environments, the metabolic interactions between calcifying and non-calcifying organisms are instrumental in providing refuge against OA effects and increasing the resilience of the more OA-susceptible species.E.B. would like to thank the Coordenação de Aperfeiçoamento de Pessoas de Nível Superior (CAPES) for Masters
funding. Funding for this project came from the Synergism grant (CNPq 407365/2013-3). We extend our thanks
to the Brazil-based Projeto Coral Vivo and its sponsor PetroBras Ambiental for providing the Marine Mesocosm
structure and experimental assistance.info:eu-repo/semantics/publishedVersio
Classical and Quantum Equations of Motion for a BTZ Black String in AdS Space
We investigate gravitational collapse of a -dimensional BTZ black
string in AdS space in the context of both classical and quantum mechanics.
This is done by first deriving the conserved mass per unit length of the
cylindrically symmetric domain wall, which is taken as the classical
Hamiltonian of the black string. In the quantum mechanical context, we take
primary interest in the behavior of the collapse near the horizon and near the
origin (classical singularity) from the point of view of an infalling observer.
In the absence of radiation, quantum effects near the horizon do not change the
classical conclusions for an infalling observer, meaning that the horizon is
not an obstacle for him/her. The most interesting quantum mechanical effect
comes in when investigating near the origin. First, quantum effects are able to
remove the classical singularity at the origin, since the wave function is
non-singular at the origin. Second, the Schr\"odinger equation describing the
behavior near the origin displays non-local effects, which depend on the energy
density of the domain wall. This is manifest in that derivatives of the
wavefunction at one point are related to the value of the wavefunction at some
other distant point.Comment: 9 pages, 1 figure. Minor Clarification and corrections. Accepted for
Publication in JHE
New Experimental Limits on Macroscopic Forces Below 100 Microns
Results of an experimental search for new macroscopic forces with Yukawa
range between 5 and 500 microns are presented. The experiment uses 1 kHz
mechanical oscillators as test masses with a stiff conducting shield between
them to suppress backgrounds. No signal is observed above the instrumental
thermal noise after 22 hours of integration time. These results provide the
strongest limits to date between 10 and 100 microns, improve on previous limits
by as much as three orders of magnitude, and rule out half of the remaining
parameter space for predictions of string-inspired models with low-energy
supersymmetry breaking. New forces of four times gravitational strength or
greater are excluded at the 95% confidence level for interaction ranges between
200 and 500 microns.Comment: 25 Pages, 7 Figures: Minor Correction
The Social and Political Dimensions of the Ebola Response: Global Inequality, Climate Change, and Infectious Disease
The 2014 Ebola crisis has highlighted public-health vulnerabilities in Liberia, Sierra
Leone, and Guinea – countries ravaged by extreme poverty, deforestation and
mining-related disruption of livelihoods and ecosystems, and bloody civil wars in
the cases of Liberia and Sierra Leone. Ebola’s emergence and impact are grounded
in the legacy of colonialism and its creation of enduring inequalities within African
nations and globally, via neoliberalism and the Washington Consensus. Recent
experiences with new and emerging diseases such as SARS and various strains of
HN influenzas have demonstrated the effectiveness of a coordinated local and
global public health and education-oriented response to contain epidemics. To what
extent is international assistance to fight Ebola strengthening local public health and
medical capacity in a sustainable way, so that other emerging disease threats, which
are accelerating with climate change, may be met successfully? This chapter
considers the wide-ranging socio-political, medical, legal and environmental factors
that have contributed to the rapid spread of Ebola, with particular emphasis on the
politics of the global and public health response and the role of gender, social
inequality, colonialism and racism as they relate to the mobilization and
establishment of the public health infrastructure required to combat Ebola and other
emerging diseases in times of climate change
A reverse engineering approach to the suppression of citation biases reveals universal properties of citation distributions
The large amount of information contained in bibliographic databases has
recently boosted the use of citations, and other indicators based on citation
numbers, as tools for the quantitative assessment of scientific research.
Citations counts are often interpreted as proxies for the scientific influence
of papers, journals, scholars, and institutions. However, a rigorous and
scientifically grounded methodology for a correct use of citation counts is
still missing. In particular, cross-disciplinary comparisons in terms of raw
citation counts systematically favors scientific disciplines with higher
citation and publication rates. Here we perform an exhaustive study of the
citation patterns of millions of papers, and derive a simple transformation of
citation counts able to suppress the disproportionate citation counts among
scientific domains. We find that the transformation is well described by a
power-law function, and that the parameter values of the transformation are
typical features of each scientific discipline. Universal properties of
citation patterns descend therefore from the fact that citation distributions
for papers in a specific field are all part of the same family of univariate
distributions.Comment: 9 pages, 6 figures. Supporting information files available at
http://filrad.homelinux.or
Modeling the scaling properties of human mobility
While the fat tailed jump size and the waiting time distributions
characterizing individual human trajectories strongly suggest the relevance of
the continuous time random walk (CTRW) models of human mobility, no one
seriously believes that human traces are truly random. Given the importance of
human mobility, from epidemic modeling to traffic prediction and urban
planning, we need quantitative models that can account for the statistical
characteristics of individual human trajectories. Here we use empirical data on
human mobility, captured by mobile phone traces, to show that the predictions
of the CTRW models are in systematic conflict with the empirical results. We
introduce two principles that govern human trajectories, allowing us to build a
statistically self-consistent microscopic model for individual human mobility.
The model not only accounts for the empirically observed scaling laws but also
allows us to analytically predict most of the pertinent scaling exponents
Recommended from our members
Targeted and Genome-Scale Methylomics Reveals Gene Body Signatures in Human Cell Lines
Cytosine methylation, an epigenetic modification of DNA, is a target of growing interest for developing high throughput profiling technologies. Here we introduce two new, complementary techniques for cytosine methylation profiling utilizing next generation sequencing technology: bisulfite padlock probes (BSPPs) and methyl sensitive cut counting (MSCC). In the first method, we designed a set of ~10,000 BSPPs distributed over the ENCODE pilot project regions to take advantage of existing expression and chromatin immunoprecipitation data. We observed a pattern of low promoter methylation coupled with high gene body methylation in highly expressed genes. Using the second method, MSCC, we gathered genome-scale data for 1.4 million HpaII sites and confirmed that gene body methylation in highly expressed genes is a consistent phenomenon over the entire genome. Our observations highlight the usefulness of techniques which are not inherently or intentionally biased in favor of only profiling particular subsets like CpG islands or promoter regions
The geography of recent genetic ancestry across Europe
The recent genealogical history of human populations is a complex mosaic
formed by individual migration, large-scale population movements, and other
demographic events. Population genomics datasets can provide a window into this
recent history, as rare traces of recent shared genetic ancestry are detectable
due to long segments of shared genomic material. We make use of genomic data
for 2,257 Europeans (the POPRES dataset) to conduct one of the first surveys of
recent genealogical ancestry over the past three thousand years at a
continental scale. We detected 1.9 million shared genomic segments, and used
the lengths of these to infer the distribution of shared ancestors across time
and geography. We find that a pair of modern Europeans living in neighboring
populations share around 10-50 genetic common ancestors from the last 1500
years, and upwards of 500 genetic ancestors from the previous 1000 years. These
numbers drop off exponentially with geographic distance, but since genetic
ancestry is rare, individuals from opposite ends of Europe are still expected
to share millions of common genealogical ancestors over the last 1000 years.
There is substantial regional variation in the number of shared genetic
ancestors: especially high numbers of common ancestors between many eastern
populations likely date to the Slavic and/or Hunnic expansions, while much
lower levels of common ancestry in the Italian and Iberian peninsulas may
indicate weaker demographic effects of Germanic expansions into these areas
and/or more stably structured populations. Recent shared ancestry in modern
Europeans is ubiquitous, and clearly shows the impact of both small-scale
migration and large historical events. Population genomic datasets have
considerable power to uncover recent demographic history, and will allow a much
fuller picture of the close genealogical kinship of individuals across the
world.Comment: Full size figures available from
http://www.eve.ucdavis.edu/~plralph/research.html; or html version at
http://ralphlab.usc.edu/ibd/ibd-paper/ibd-writeup.xhtm
- …
