The large amount of information contained in bibliographic databases has
recently boosted the use of citations, and other indicators based on citation
numbers, as tools for the quantitative assessment of scientific research.
Citations counts are often interpreted as proxies for the scientific influence
of papers, journals, scholars, and institutions. However, a rigorous and
scientifically grounded methodology for a correct use of citation counts is
still missing. In particular, cross-disciplinary comparisons in terms of raw
citation counts systematically favors scientific disciplines with higher
citation and publication rates. Here we perform an exhaustive study of the
citation patterns of millions of papers, and derive a simple transformation of
citation counts able to suppress the disproportionate citation counts among
scientific domains. We find that the transformation is well described by a
power-law function, and that the parameter values of the transformation are
typical features of each scientific discipline. Universal properties of
citation patterns descend therefore from the fact that citation distributions
for papers in a specific field are all part of the same family of univariate
distributions.Comment: 9 pages, 6 figures. Supporting information files available at
http://filrad.homelinux.or