520 research outputs found

    Insights into the regulation of DMSP synthesis in the diatom Thalassiosira pseudonana through APR activity, proteomics and gene expression analyses on cells acclimating to changes in salinity, light and nitrogen

    Get PDF
    Despite the importance of dimethylsulphoniopropionate (DMSP) in the global sulphur cycle and climate regulation, the biological pathways underpinning its synthesis in marine phytoplankton remain poorly understood. The intracellular concentration of DMSP increases with increased salinity, increased light intensity and nitrogen starvation in the diatom Thalassiosira pseudonana. We used these conditions to investigate DMSP synthesis at the cellular level via analysis of enzyme activity, gene expression and proteome comparison. The activity of the key sulphur assimilatory enzyme, adenosine 5′- phosphosulphate reductase was not coordinated with increasing intracellular DMSP concentration. Under all three treatments coordination in the expression of sulphur assimilation genes was limited to increases in sulphite reductase transcripts. Similarly, proteomic 2D gel analysis only revealed an increase in phosphoenolpyruvate carboxylase following increases in DMSP concentration. Our findings suggest that increased sulphur assimilation might not be required for increased DMSP synthesis, instead the availability of carbon and nitrogen substrates may be important in the regulation of this pathway. This contrasts with the regulation of sulphur metabolism in higher plants, which generally involves upregulation of several sulphur assimilatory enzymes. In T. pseudonana changes relating to sulphur metabolism were specific to the individual treatments and, given that little coordination was seen in transcript and protein responses across the three growth conditions, different patterns of regulation might be responsible for the increase in DMSP concentration seen under each treatment

    Spinal involvement in mucopolysaccharidosis IVA (Morquio-Brailsford or Morquio A syndrome): presentation, diagnosis and management.

    Get PDF
    Mucopolysaccharidosis IVA (MPS IVA), also known as Morquio-Brailsford or Morquio A syndrome, is a lysosomal storage disorder caused by a deficiency of the enzyme N-acetyl-galactosamine-6-sulphate sulphatase (GALNS). MPS IVA is multisystemic but manifests primarily as a progressive skeletal dysplasia. Spinal involvement is a major cause of morbidity and mortality in MPS IVA. Early diagnosis and timely treatment of problems involving the spine are critical in preventing or arresting neurological deterioration and loss of function. This review details the spinal manifestations of MPS IVA and describes the tools used to diagnose and monitor spinal involvement. The relative utility of radiography, computed tomography (CT) and magnetic resonance imaging (MRI) for the evaluation of cervical spine instability, stenosis, and cord compression is discussed. Surgical interventions, anaesthetic considerations, and the use of neurophysiological monitoring during procedures performed under general anaesthesia are reviewed. Recommendations for regular radiological imaging and neurologic assessments are presented, and the need for a more standardized approach for evaluating and managing spinal involvement in MPS IVA is addressed

    Recurrent Modification of a Conserved Cis-Regulatory Element Underlies Fruit Fly Pigmentation Diversity

    Get PDF
    The development of morphological traits occurs through the collective action of networks of genes connected at the level of gene expression. As any node in a network may be a target of evolutionary change, the recurrent targeting of the same node would indicate that the path of evolution is biased for the relevant trait and network. Although examples of parallel evolution have implicated recurrent modification of the same gene and cis-regulatory element (CRE), little is known about the mutational and molecular paths of parallel CRE evolution. In Drosophila melanogaster fruit flies, the Bric-à-brac (Bab) transcription factors control the development of a suite of sexually dimorphic traits on the posterior abdomen. Female-specific Bab expression is regulated by the dimorphic element, a CRE that possesses direct inputs from body plan (ABD-B) and sex-determination (DSX) transcription factors. Here, we find that the recurrent evolutionary modification of this CRE underlies both intraspecific and interspecific variation in female pigmentation in the melanogaster species group. By reconstructing the sequence and regulatory activity of the ancestral Drosophila melanogaster dimorphic element, we demonstrate that a handful of mutations were sufficient to create independent CRE alleles with differing activities. Moreover, intraspecific and interspecific dimorphic element evolution proceeded with little to no alterations to the known body plan and sex-determination regulatory linkages. Collectively, our findings represent an example where the paths of evolution appear biased to a specific CRE, and drastic changes in function were accompanied by deep conservation of key regulatory linkages. © 2013 Rogers et al

    The Development of a Point of Care Clinical Guidelines Mobile Application Following a User-Centred Design Approach

    Get PDF
    This paper describes the development of a point of care clinical guidelines mobile application. A user-centred design approach was utilised to inform the design of a smartphone application, this included: Observations; a survey; focus groups and an analysis of popular apps utilised by clinicians in a UK NHS Trust. Usability testing was conducted to inform iterations of the application, which presents clinicians with a variety of integrated tools to aid in decision making and information retrieval. The study found that clinicians use a mixture of technology to retrieve information, which is often inefficient or has poor usability. It also shows that smartphone application development for use in UK hospitals needs to consider the variety of users and their clinical knowledge and work pattern. This study highlights the need for applying user-centred design methods in the design of information presented to clinicians and the need for clinical information delivery that is efficient and easy to use at the bedside

    Structural Olfactory Nerve Changes in Patients Suffering from Idiopathic Intracranial Hypertension

    Get PDF
    BACKGROUND: Complications of idiopathic intracranial hypertension (IIH) are usually caused by elevated intracranial pressure (ICP). In a similar way as in the optic nerve, elevated ICP could also compromise the olfactory nerve system. On the other side, there is growing evidence that an extensive lymphatic network system around the olfactory nerves could be disturbed in cerebrospinal fluid disorders like IIH. The hypothesis that patients with IIH suffer from hyposmia has been suggested in the past. However, this has not been proven in clinical studies yet. This pilot study investigates whether structural changes of the olfactory nerve system can be detected in patients with IIH. METHODOLOGY/PRINCIPAL FINDINGS: Twenty-three patients with IIH and 23 matched controls were included. Olfactory bulb volume (OBV) and sulcus olfactorius (OS) depth were calculated by magnetic resonance techniques. While mean values of total OBV (128.7±38.4 vs. 130.0±32.6 mm(3), p=0.90) and mean OS depth (8.5±1.2 vs. 8.6±1.1 mm, p=0.91) were similar in both groups, Pearson correlation showed that patients with a shorter medical history IIH revealed a smaller OBV (r=0.53, p<0.01). In untreated symptomatic patients (n=7), the effect was greater (r=0.76, p<0.05). Patients who suffered from IIH for less than one year (n=8), total OBV was significantly smaller than in matched controls (116.6±24.3 vs. 149.3±22.2 mm(3), p=0.01). IIH patients with visual disturbances (n=21) revealed a lower OS depth than patients without (8.3±0.9 vs. 10.8±1.0 mm, p<0.01). CONCLUSIONS/SIGNIFICANCE: The results suggest that morphological changes of the olfactory nerve system could be present in IIH patients at an early stage of disease

    Search for Gravitational Waves from Primordial Black Hole Binary Coalescences in the Galactic Halo

    Get PDF
    We use data from the second science run of the LIGO gravitational-wave detectors to search for the gravitational waves from primordial black hole (PBH) binary coalescence with component masses in the range 0.2--1.0M⊙1.0 M_\odot. The analysis requires a signal to be found in the data from both LIGO observatories, according to a set of coincidence criteria. No inspiral signals were found. Assuming a spherical halo with core radius 5 kpc extending to 50 kpc containing non-spinning black holes with masses in the range 0.2--1.0M⊙1.0 M_\odot, we place an observational upper limit on the rate of PBH coalescence of 63 per year per Milky Way halo (MWH) with 90% confidence.Comment: 7 pages, 4 figures, to be submitted to Phys. Rev.

    Structure of an Enzyme-Derived Phosphoprotein Recognition Domain

    Get PDF
    Membrane Associated Guanylate Kinases (MAGUKs) contain a protein interaction domain (GKdom) derived from the enzyme Guanylate Kinase (GKenz). Here we show that GKdom from the MAGUK Discs large (Dlg) is a phosphoprotein recognition domain, specifically recognizing the phosphorylated form of the mitotic spindle orientation protein Partner of Inscuteable (Pins). We determined the structure of the Dlg-Pins complex to understand the dramatic transition from nucleotide kinase to phosphoprotein recognition domain. The structure reveals that the region of the GKdom that once served as the GMP binding domain (GBD) has been co-opted for protein interaction. Pins makes significantly more contact with the GBD than does GMP, but primarily with residues that are conserved between enzyme and domain revealing the versatility of the GBD as a platform for nucleotide and protein interactions. Mutational analysis reveals that the GBD is also used to bind the GK ligand MAP1a, suggesting that this is a common mode of MAGUK complex assembly. The GKenz undergoes a dramatic closing reaction upon GMP binding but the protein-bound GKdom remains in the ‘open’ conformation indicating that the dramatic conformational change has been lost in the conversion from nucleotide kinase to phosphoprotein recognition domain
    • …
    corecore