150 research outputs found

    The global dynamics of RNA stability orchestrates responses to cellular activation

    Get PDF
    Transcriptomics is used to quantify changes in accumulated levels of mRNAs following cellular activation. These changes arise from the opposing fluxes of transcription and mRNA decay, both of which affect the functional dynamics of global gene expression. A study published recently in BMC Genomics focuses on the contribution made by mRNA stability in shaping the kinetics of gene responses in mammalian cells

    Risk factors associated with fatal pulmonary hemorrhage in locally advanced non-small cell lung cancer treated with chemoradiotherapy

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The purpose of this study was to identify the risk factors associated with fatal pulmonary hemorrhage (PH) in patients with locally advanced non-small cell lung cancer (NSCLC), treated with chemoradiotherapy.</p> <p>Methods</p> <p>The medical records of 583 patients with locally advanced NSCLC, who were treated with chemoradiotherapy between July 1992 and December 2009 were reviewed. Fatal PH was defined as PH leading to death within 24 h of its onset. Tumor cavitation size was defined by the cavitation diameter/tumor diameter ratio and was classified as minimum (< 0.25), minor (≥ 0.25, but < 0.5), and major (≥ 0.5).</p> <p>Results</p> <p>Of the 583 patients, 2.1% suffered a fatal PH. The numbers of patients with minimum, minor, and major cavitations were 13, 11, and 14, respectively. Among the 38 patients with tumor cavitation, all 3 patients who developed fatal PH had major cavitations. On multivariate analysis, the presence of baseline major cavitation (odds ratio, 17.878), and a squamous cell histology (odds ratio, 5.491) proved to be independent significant risk factors for fatal PH. Interestingly, all patients with fatal PH and baseline major cavitation were found to have tumors with squamous cell histology, and the occurrence of fatal PH in patients having both risk factors was 33.3%.</p> <p>Conclusions</p> <p>Patients at high risk of fatal PH could be identified using a combination of independent risk factors.</p

    The Hubbard model within the equations of motion approach

    Full text link
    The Hubbard model has a special role in Condensed Matter Theory as it is considered as the simplest Hamiltonian model one can write in order to describe anomalous physical properties of some class of real materials. Unfortunately, this model is not exactly solved except for some limits and therefore one should resort to analytical methods, like the Equations of Motion Approach, or to numerical techniques in order to attain a description of its relevant features in the whole range of physical parameters (interaction, filling and temperature). In this manuscript, the Composite Operator Method, which exploits the above mentioned analytical technique, is presented and systematically applied in order to get information about the behavior of all relevant properties of the model (local, thermodynamic, single- and two- particle ones) in comparison with many other analytical techniques, the above cited known limits and numerical simulations. Within this approach, the Hubbard model is shown to be also capable to describe some anomalous behaviors of the cuprate superconductors.Comment: 232 pages, more than 300 figures, more than 500 reference

    PAR1 is selectively over expressed in high grade breast cancer patients: a cohort study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The protease-activated receptor (PAR1) expression is correlated with the degree of invasiveness in cell lines. Nevertheless it has never been directed involved in breast cancer patients progression. The aim of this study was to determine whether PAR1 expression could be used as predictor of metastases and mortality.</p> <p>Methods</p> <p>In a cohort of patients with infiltrating ductal carcinoma studied longitudinally since 1996 and until 2007, PAR1 over-expression was assessed by immunoblotting, immunohistochemistry, and flow citometry. Chi-square and log rank tests were used to determine whether there was a statistical association between PAR1 overexpression and metastases, mortality, and survival. Multivariate analysis was performed including HER1, stage, ER and nodes status to evaluate PAR1 as an independent prognostic factor.</p> <p>Results</p> <p>Follow up was 95 months (range: 2–130 months). We assayed PAR1 in a cohort of patients composed of 136 patients; we found PAR1 expression assayed by immunoblotting was selectively associated with high grade patients (50 cases of the study cohort; P = 0.001). Twenty-nine of 50 (58%) patients overexpressed PAR1, and 23 of these (46%) developed metastases. HER1, stage, ER and PAR1 overexpression were robustly correlated (Cox regression, P = 0.002, P = 0.024 and P = 0.002 respectively). Twenty-one of the 50 patients (42%) expressed both receptors (PAR1 and HER1 P = 0.0004). We also found a statistically significant correlation between PAR1 overexpression and increased mortality (P = 0.0001) and development of metastases (P = 0.0009).</p> <p>Conclusion</p> <p>Our data suggest PAR1 overexpression may be involved in the development of metastases in breast cancer patient and is associated with undifferentiated cellular progression of the tumor. Further studies are needed to understand PAR1 mechanism of action and in a near future assay its potential use as risk factor for metastasis development in high grade breast cancer patients.</p

    Depleted 15N in hydrolysable-N of arctic soils and its implication for mycorrhizal fungi–plant interaction

    Get PDF
    Author Posting. © The Author(s), 2009. This is the author's version of the work. It is posted here by permission of Springer for personal use, not for redistribution. The definitive version was published in Biogeochemistry 97 (2009): 183-194, doi:10.1007/s10533-009-9365-1.Uptake of nitrogen (N) via root-mycorrhizal associations accounts for a significant portion of total N supply to many vascular plants. Using stable isotope ratios (δ15N) and the mass balance among N pools of plants, fungal tissues, and soils, a number of efforts have been made in recent years to quantify the flux of N from mycorrhizal fungi to host plants. Current estimates of this flux for arctic tundra ecosystems rely on the untested assumption that the δ15N of labile organic N taken up by the fungi is approximately the same as the δ15N of bulk soil. We report here hydrolysable amino acids are more depleted in 15N relative to hydrolysable ammonium and amino sugars in arctic tundra soils near Toolik Lake, Alaska, USA. We demonstrate, using a case study, that recognizing the depletion in 15N for hydrolysable amino acids (δ15N = -5.6 ‰ on average) would alter recent estimates of N flux between mycorrhizal fungi and host plants in an arctic tundra ecosystem.This study was funded by NSF-DEB-0423385and NSF-DEB 0444592. Additional support was provided by Arctic Long Term Ecological Research program, funded by National Science Foundation, Division of Environmental Biology

    Next generation transcriptomes for next generation genomes using est2assembly

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The decreasing costs of capillary-based Sanger sequencing and next generation technologies, such as 454 pyrosequencing, have prompted an explosion of transcriptome projects in non-model species, where even shallow sequencing of transcriptomes can now be used to examine a range of research questions. This rapid growth in data has outstripped the ability of researchers working on non-model species to analyze and mine transcriptome data efficiently.</p> <p>Results</p> <p>Here we present a semi-automated platform '<it>est2assembly</it>' that processes raw sequence data from Sanger or 454 sequencing into a hybrid <it>de-novo </it>assembly, annotates it and produces GMOD compatible output, including a SeqFeature database suitable for GBrowse. Users are able to parameterize assembler variables, judge assembly quality and determine the optimal assembly for their specific needs. We used <it>est2assembly </it>to process <it>Drosophila </it>and <it>Bicyclus </it>public Sanger EST data and then compared them to published 454 data as well as eight new insect transcriptome collections.</p> <p>Conclusions</p> <p>Analysis of such a wide variety of data allows us to understand how these new technologies can assist EST project design. We determine that assembler parameterization is as essential as standardized methods to judge the output of ESTs projects. Further, even shallow sequencing using 454 produces sufficient data to be of wide use to the community. <it>est2assembly </it>is an important tool to assist manual curation for gene models, an important resource in their own right but especially for species which are due to acquire a genome project using Next Generation Sequencing.</p

    Landscape history, time lags and drivers of change : urban natural grassland remnants in Potchefstroom, South Africa

    Get PDF
    The history of the landscape directly affects biotic assemblages, resulting in time lags in species response to disturbances. In highly fragmented environments, this phenomenon often causes extinction debts. However, few studies have been carried out in urban settings. To determine if there are time lags in the response of temperate natural grasslands to urbanization. Does it differ for indigenous species and for species indicative of disturbance and between woody and open grasslands? Do these time lags change over time? What are the potential landscape factors driving these changes? What are the corresponding vegetation changes? In 1995 and 2012 vegetation sampling was carried out in 43 urban grassland sites. We calculated six urbanization and landscape measures in a 500 m buffer area surrounding each site for 1938, 1961, 1970, 1994, 1999, 2006, and 2010. We used generalized linear models and model selection to determine which time period best predicted the contemporary species richness patterns. Woody grasslands showed time lags of 20-40 years. Contemporary open grassland communities were, generally, associated with more contemporary landscapes. Altitude and road network density of natural areas were the most frequent predictors of species richness. The importance of the predictors changed between the different models. Species richness, specifically, indigenous herbaceous species, declined from 1995 to 2012. The history of urbanization affects contemporary urban vegetation assemblages. This indicates potential extinction debts, which have important consequences for biodiversity conservation planning and sustainable future scenarios.Peer reviewe
    corecore