97 research outputs found

    The dynamical evolution of molecular clouds near the Galactic Centre - II. Spatial structure and kinematics of simulated clouds

    Get PDF
    The evolution of molecular clouds in galactic centres is thought to differ from that in galactic discs due to a significant influence of the external gravitational potential. We present a set of numerical simulations of molecular clouds orbiting on the 100-pc stream of the Central Molecular Zone (the central 500\sim500 pc of the Galaxy) and characterise their morphological and kinematic evolution in response to the background potential and eccentric orbital motion. We find that the clouds are shaped by strong shear and torques, by tidal and geometric deformation, and by their passage through the orbital pericentre. Within our simulations, these mechanisms control cloud sizes, aspect ratios, position angles, filamentary structure, column densities, velocity dispersions, line-of-sight velocity gradients, spin angular momenta, and kinematic complexity. By comparing these predictions to observations of clouds on the Galactic Centre 'dust ridge', we find that our simulations naturally reproduce a broad range of key observed morphological and kinematic features, which can be explained in terms of well-understood physical mechanisms. We argue that the accretion of gas clouds onto the central regions of galaxies, where the rotation curve turns over and the tidal field is fully compressive, is accompanied by transformative dynamical changes to the clouds, leading to collapse and star formation. This can generate an evolutionary progression of cloud collapse with a common starting point, which either marks the time of accretion onto the tidally-compressive region or of the most recent pericentre passage. Together, these processes may naturally produce the synchronised starbursts observed in numerous (extra)galactic nuclei

    Molecular gas kinematics within the central 250 pc of the Milky Way

    Get PDF
    Using spectral-line observations of HNCO, N2H+, and HNC, we investigate the kinematics of dense gas in the central ~250 pc of the Galaxy. We present SCOUSE (Semi-automated multi-COmponent Universal Spectral-line fitting Engine), a line fitting algorithm designed to analyse large volumes of spectral-line data efficiently and systematically. Unlike techniques which do not account for complex line profiles, SCOUSE accurately describes the {l, b, v_LSR} distribution of CMZ gas, which is asymmetric about Sgr A* in both position and velocity. Velocity dispersions range from 2.6 km/s28. The gas is distributed throughout several "streams", with projected lengths ~100-250 pc. We link the streams to individual clouds and sub-regions, including Sgr C, the 20 and 50 km/s clouds, the dust ridge, and Sgr B2. Shell-like emission features can be explained by the projection of independent molecular clouds in Sgr C and the newly identified conical profile of Sgr B2 in {l ,b, v_LSR} space. These features have previously invoked supernova-driven shells and cloud-cloud collisions as explanations. We instead caution against structure identification in velocity-integrated emission maps. Three geometries describing the 3-D structure of the CMZ are investigated: i) two spiral arms; ii) a closed elliptical orbit; iii) an open stream. While two spiral arms and an open stream qualitatively reproduce the gas distribution, the most recent parameterisation of the closed elliptical orbit does not. Finally, we discuss how proper motion measurements of masers can distinguish between these geometries, and suggest that this effort should be focused on the 20 km/s and 50 km/s clouds and Sgr C

    'The Brick' is not a brick: A comprehensive study of the structure and dynamics of the Central Molecular Zone cloud G0.253+0.016

    Get PDF
    In this paper we provide a comprehensive description of the internal dynamics of G0.253+0.016 (a.k.a. 'the Brick'); one of the most massive and dense molecular clouds in the Galaxy to lack signatures of widespread star formation. As a potential host to a future generation of high-mass stars, understanding largely quiescent molecular clouds like G0.253+0.016 is of critical importance. In this paper, we reanalyse Atacama Large Millimeter Array cycle 0 HNCO J=4(0,4)3(0,3)J=4(0,4)-3(0,3) data at 3 mm, using two new pieces of software which we make available to the community. First, scousepy, a Python implementation of the spectral line fitting algorithm scouse. Secondly, acorns (Agglomerative Clustering for ORganising Nested Structures), a hierarchical n-dimensional clustering algorithm designed for use with discrete spectroscopic data. Together, these tools provide an unbiased measurement of the line of sight velocity dispersion in this cloud, σvlos,1D=4.4±2.1\sigma_{v_{los}, {\rm 1D}}=4.4\pm2.1 kms1^{-1}, which is somewhat larger than predicted by velocity dispersion-size relations for the Central Molecular Zone (CMZ). The dispersion of centroid velocities in the plane of the sky are comparable, yielding σvlos,1D/σvpos,1D1.2±0.3\sigma_{v_{los}, {\rm 1D}}/\sigma_{v_{pos}, {\rm 1D}}\sim1.2\pm0.3. This isotropy may indicate that the line-of-sight extent of the cloud is approximately equivalent to that in the plane of the sky. Combining our kinematic decomposition with radiative transfer modelling we conclude that G0.253+0.016 is not a single, coherent, and centrally-condensed molecular cloud; 'the Brick' is not a \emph{brick}. Instead, G0.253+0.016 is a dynamically complex and hierarchically-structured molecular cloud whose morphology is consistent with the influence of the orbital dynamics and shear in the CMZ

    Molecular gas kinematics within the central 250 pc of the Milky Way

    Get PDF
    Using spectral-line observations of HNCO, N2H+, and HNC, we investigate the kinematics of dense gas in the central ~250 pc of the Galaxy. We present SCOUSE (Semi-automated multi-COmponent Universal Spectral-line fitting Engine), a line fitting algorithm designed to analyse large volumes of spectral-line data efficiently and systematically. Unlike techniques which do not account for complex line profiles, SCOUSE accurately describes the {l, b, v_LSR} distribution of CMZ gas, which is asymmetric about Sgr A* in both position and velocity. Velocity dispersions range from 2.6 km/s28. The gas is distributed throughout several "streams", with projected lengths ~100-250 pc. We link the streams to individual clouds and sub-regions, including Sgr C, the 20 and 50 km/s clouds, the dust ridge, and Sgr B2. Shell-like emission features can be explained by the projection of independent molecular clouds in Sgr C and the newly identified conical profile of Sgr B2 in {l ,b, v_LSR} space. These features have previously invoked supernova-driven shells and cloud-cloud collisions as explanations. We instead caution against structure identification in velocity-integrated emission maps. Three geometries describing the 3-D structure of the CMZ are investigated: i) two spiral arms; ii) a closed elliptical orbit; iii) an open stream. While two spiral arms and an open stream qualitatively reproduce the gas distribution, the most recent parameterisation of the closed elliptical orbit does not. Finally, we discuss how proper motion measurements of masers can distinguish between these geometries, and suggest that this effort should be focused on the 20 km/s and 50 km/s clouds and Sgr C

    Simulation of Intermetallic Solidification using Phase-Field Techniques

    Get PDF
    We present current ideas towards developing a phase-field model appropriate to the solidification of intermetallic phases. Such simulation presents two main challenges (i) dealing with faceted interfaces and (ii) the complex sub-lattice models used to describe the thermodynamics of such phases. Although models are already existent for the simulation of faceted crystals, some of these can be shown to produce highly unrealistic Wulff shapes. The model present here uses a parameterization of the Wulff shape as a direct input to the model, allowing the simulation of arbitrary crystal shapes. In addition, an anti-trapping current that can be used with arbitrary (including sub-lattice) thermodynamics is presented. Such antitrapping currents are vital in the simulation of intermetallic phases where the steep liquidus slope means small deviations in solute partitioning behaviour can translate to a significant change in tip undercooling

    Translation Levels Control Multi-Spanning Membrane Protein Expression

    Get PDF
    Attempts to express eukaryotic multi-spanning membrane proteins at high-levels have been generally unsuccessful. In order to investigate the cause of this limitation and gain insight into the rate limiting processes involved, we have analyzed the effect of translation levels on the expression of several human membrane proteins in Escherichia coli (E. coli). These results demonstrate that excessive translation initiation rates of membrane proteins cause a block in protein synthesis and ultimately prevent the high-level accumulation of these proteins. Moderate translation rates allow coupling of peptide synthesis and membrane targeting, resulting in a significant increase in protein expression and accumulation over time. The current study evaluates four membrane proteins, CD20 (4-transmembrane (TM) helixes), the G-protein coupled receptors (GPCRs, 7-TMs) RA1c and EG-VEGFR1, and Patched 1 (12-TMs), and demonstrates the critical role of translation initiation rates in the targeting, insertion and folding of integral membrane proteins in the E. coli membrane

    Practice change in chronic conditions care: an appraisal of theories

    Get PDF
    Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.Background Management of chronic conditions can be complex and burdensome for patients and complex and costly for health systems. Outcomes could be improved and costs reduced if proven clinical interventions were better implemented, but the complexity of chronic care services appears to make clinical change particularly challenging. Explicit use of theories may improve the success of clinical change in this area of care provision. Whilst theories to support implementation of practice change are apparent in the broad healthcare arena, the most applicable theories for the complexities of practice change in chronic care have not yet been identified. Methods We developed criteria to review the usefulness of change implementation theories for informing chronic care management and applied them to an existing list of theories used more widely in healthcare. Results Criteria related to the following characteristics of chronic care: breadth of the field; multi-disciplinarity; micro, meso and macro program levels; need for field-specific research on implementation requirements; and need for measurement. Six theories met the criteria to the greatest extent: the Consolidate Framework for Implementation Research; Normalization Process Theory and its extension General Theory of Implementation; two versions of the Promoting Action on Research Implementation in Health Services framework and Sticky Knowledge. None fully met all criteria. Involvement of several care provision organizations and groups, involvement of patients and carers, and policy level change are not well covered by most theories. However, adaptation may be possible to include multiple groups including patients and carers, and separate theories may be needed on policy change. Ways of qualitatively assessing theory constructs are available but quantitative measures are currently partial and under development for all theories. Conclusions Theoretical bases are available to structure clinical change research in chronic condition care. Theories will however need to be adapted and supplemented to account for the particular features of care in this field, particularly in relation to involvement of multiple organizations and groups, including patients, and in relation to policy influence. Quantitative measurement of theory constructs may present difficulties

    A comparison of specialist rehabilitation and care assistant support with specialist rehabilitation alone and usual care for people with Parkinson's living in the community: study protocol for a randomised controlled trial

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Parkinson's Disease is a degenerative neurological condition that causes movement problems and other distressing symptoms. People with Parkinson's disease gradually lose their independence and strain is placed on family members. A multidisciplinary approach to rehabilitation for people with Parkinson's is recommended but has not been widely researched. Studies are needed that investigate cost-effective community-based service delivery models to reduce disability and dependency and admission to long term care, and improve quality of life.</p> <p>Methods</p> <p>A pragmatic three parallel group randomised controlled trial involving people with Parkinson's Disease and live-in carers (family friends or paid carers), and comparing: management by a specialist multidisciplinary team for six weeks, according to a care plan agreed between the professionals and the patient and carer (Group A); multidisciplinary team management and additional support for four months from a trained care assistant (Group B); usual care, no coordinated team care planning or ongoing support (Group C). Follow up will be for six months to determine the impact and relative cost-effectiveness of the two interventions, compared to usual care. The primary outcomes are disability (patients) and strain (carers). Secondary outcomes include patient mobility, falls, speech, pain, self efficacy, health and social care use; carer general health; patient and carer social functioning, psychological wellbeing, health related quality of life. Semi structured interviews will be undertaken with providers (team members, care assistants), service commissioners, and patients and carers in groups A and B, to gain feedback about the acceptability of the interventions. A cost - effectiveness evaluation is embedded in the trial.</p> <p>Discussion</p> <p>The trial investigates components of recent national policy recommendations for people with long term conditions, and Parkinson's Disease in particular, and will provide guidance to inform local service planning and commissioning.</p> <p>Trial registration</p> <p>ISRCTN: <a href="http://www.controlled-trials.com/ISRCTN44577970">ISRCTN44577970</a></p

    SAMMSON fosters cancer cell fitness by concertedly enhancing mitochondrial and cytosolic translation

    No full text
    Synchronization of mitochondrial and cytoplasmic translation rates is critical for the maintenance of cellular fitness, with cancer cells being especially vulnerable to translational uncoupling. Although alterations of cytosolic protein synthesis are common in human cancer, compensating mechanisms in mitochondrial translation remain elusive. Here we show that the malignant long non-coding RNA (lncRNA) SAMMSON promotes a balanced increase in ribosomal RNA (rRNA) maturation and protein synthesis in the cytosol and mitochondria by modulating the localization of CARF, an RNA-binding protein that sequesters the exo-ribonuclease XRN2 in the nucleoplasm, which under normal circumstances limits nucleolar rRNA maturation. SAMMSON interferes with XRN2 binding to CARF in the nucleus by favoring the formation of an aberrant cytoplasmic RNA-protein complex containing CARF and p32, a mitochondrial protein required for the processing of the mitochondrial rRNAs. These data highlight how a single oncogenic lncRNA can simultaneously modulate RNA-protein complex formation in two distinct cellular compartments to promote cell growth
    corecore