417 research outputs found

    Matter-wave interferometry with helium atoms in low- l Rydberg states

    Get PDF
    Electric Rydberg-atom interferometry has been performed with helium atoms in coherent superpositions of the 1s56s 3S1 and 1s57s 3S1 Rydberg levels. The experiments were carried out in a longitudinal geometry with the atoms traveling at 2000 m/s in pulsed supersonic beams. After laser photoexcitation from the 1s2s 3S1 metastable level, coherent manipulation of the population of the Rydberg states was achieved using sequences of microwave pulses. The difference in the static electric dipole polarizabilities of the 1s56s 3S1 and 1s57s 3S1 levels allowed superpositions of external momentum states to be generated when inhomogeneous electric fields were used to exerted forces on the atoms prepared in superpositions of these internal states. Interference fringes, with contributions arising from the spatial separation of these Rydberg-atom wave packets in the direction of propagation of the atomic beam, were identified through changes in the internal-state populations as the magnitudes and durations of the time-dependent electric-field gradient pulses were adjusted. The maximal displacement of the atomic wave packets for which interference fringes were observed was ∌0.75 nm, limited by the longitudinal velocity spread in the atomic beam and the characteristics of the inhomogeneous electric-field distribution in the apparatus. The experimental data are in good quantitative agreement with the results of numerical calculations of the time evolution of the atomic states under the experimental conditions

    Resonant Rydberg-atom-microwave-field interactions in the ultrastrong-driving regime: Beyond the rotating-wave approximation

    Get PDF
    The coherent interaction of Rydberg atoms with microwave fields in the ultrastrong-driving regime, in which the Rabi frequency is of the same order of magnitude as the transition frequency, has been studied for states with principal quantum number n=105 in helium. Experiments were performed in pulsed supersonic beams, and the effects of the ultrastrong 1.280 GHz microwave driving field, tuned to near resonance with the 1s105sS13→1s105pP3 transition, were identified from Autler-Townes splittings of the 1s3pP23→1s105sS13 transition by cw laser spectroscopy. The microwave field strength was calibrated in situ in the apparatus from Autler-Townes splittings measured in the weak-driving regime in which the rotating-wave approximation holds. The results of the experiments were compared to the energy-level structure of the atoms in the presence of the microwave field calculated using Floquet methods. From this comparison, the microwave-field strengths for which the rotating-wave approximation and the two-level approximation break down have been identified. The feasibility of implementing microwave traps for Rydberg atoms and molecules, which operate in the ultrastrong-driving regime, has been evaluated

    Colchicine and amiprophos-methyl (APM) in polyploidy induction in banana plant

    Get PDF
    The objective was to assess the colchicine and amiprophos-methyl (APM) concentration and exposure period in the chromosome duplication of breed banana plants diploids. Banana stem tips were used from the following genotypes: breed diploids (1304-04 [Malaccensis x Madang (Musa acuminata spp. banksii)] and 8694-15 [0337-02 (Calcutta x Galeo) x SH32-63]). Colchicine was used at concentrations of 0 (control treatment), 1.25, 2.5 and 5.0 mM, while APM was used at 0 (control treatment), 40 and 80 ÎŒM, in solution under agitation (20 rpm), for 24 and 48 h periods. With the use of APM, 66.67% tetraploid plants were obtained in the 1304-04 genotype using 40 ÎŒM for 24 h and 18.18% in 80 ÎŒM for 48 h, while in the 8694-15 genotype using 40 and 80 ÎŒM colchicine for 48 h, 27.27 and 21.43% tetraploid plants were observed, respectively. For colchicine, in the 1304-04 genotype, only the 1.25 mM treatment for 48 h presented 25% tetraploid plants and in the 8694-15 genotype, the 5.0 mM concentration for 48 h produced 50% tetraploid plants. APM for 24 h enabled the tetraploid plant of the 1304-04 genotype to be obtained, while colchicine for 48 h resulted in tetraploid plants in the 8694-15 genotype.Key words: Musa acuminata, antimitotic, flow cytometry, tissue culture

    Winkler model for predicting the dynamic response of caisson foundations

    Get PDF
    The paper presents a Winkler-based numerical model for the analysis of the dynamic response of caisson foundations. The model allows the evaluation of the impedance functions and of the foundation input motion (FIM), which can be used in the framework of the substructure approach to compute inertial soil-foundation superstructure interaction analyses. In addition, kinematic stress resultants due to seismic shear waves propagating into the soil can be estimated. The caisson is modelled as a Timoshenko beam and the soil-caisson interaction forces are derived from the analyses of the plane-strain vibration problem of an annular rigid ring embedded into the soil. The problem solution is obtained in the frequency domain exploiting the finite element approach and generic soil stratigraphies can be considered in the applications. The model, which is characterised by a very low computational effort, is validated by performing a parametric investigation, comparing results with those obtained from more rigorous BEM-FEM models of the soil-caissons systems. Finally, some applications to real caisson foundations of offshore wind turbines (OWTs) are shown to demonstrate the model accuracy in capturing the seismic response of the foundations obtained from more rigorous models

    Evaluation of proportional and discrete shared control paradigms for low resolution user inputs

    Full text link

    Towards independence: A BCI telepresence robot for people with severe motor disabilities

    Get PDF
    © 2015 IEEE. This paper presents an important step forward towards increasing the independence of people with severe motor disabilities, by using brain-computer interfaces to harness the power of the Internet of Things. We analyze the stability of brain signals as end-users with motor disabilities progress from performing simple standard on-screen training tasks to interacting with real devices in the real world. Furthermore, we demonstrate how the concept of shared control - which interprets the user's commands in context - empowers users to perform rather complex tasks without a high workload. We present the results of nine end-users with motor disabilities who were able to complete navigation tasks with a telepresence robot successfully in a remote environment (in some cases in a different country) that they had never previously visited. Moreover, these end-users achieved similar levels of performance to a control group of 10 healthy users who were already familiar with the environment

    Effects of Chemical and Radiation Sterilisation on the Biological and Biomechanical Properties of Decellularised Porcine Peripheral Nerves

    Get PDF
    There is a clinical need for novel graft materials for the repair of peripheral nerve defects. A decellularisation process has been developed for porcine peripheral nerves, yielding a material with potentially significant advantages over other devices currently being used clinically (such as autografts and nerve guidance conduits). Grafts derived from xenogeneic tissues should undergo sterilisation prior to clinical use. It has been reported that sterilisation methods may adversely affect the properties of decellularised tissues, and therefore potentially negatively impact on the ability to promote tissue regeneration. In this study, decellularised nerves were produced and sterilised by treatment with 0.1% (v/v) PAA, gamma radiation (25–28 kGy) or E Beam (33–37 kGy). The effect of sterilisation on the decellularised nerves was determined by cytotoxicity testing, histological staining, hydroxyproline assays, uniaxial tensile testing, antibody labelling for collagen type IV, laminin and fibronectin in the basal lamina, and differential scanning calorimetry. This study concluded that decellularised nerves retained biocompatibility following sterilisation. However, sterilisation affected the mechanical properties (PAA, gamma radiation), endoneurial structure and basement membrane composition (PAA) of decellularised nerves. No such alterations were observed following E Beam treatment, suggesting that this method may be preferable for the sterilisation of decellularised porcine peripheral nerves

    Brain-actuated functional electrical stimulation elicits lasting arm motor recovery after stroke

    Get PDF
    Brain-computer interfaces (BCI) are used in stroke rehabilitation to translate brain signals into intended movements of the paralyzed limb. However, the efficacy and mechanisms of BCI-based therapies remain unclear. Here we show that BCI coupled to functional electrical stimulation (FES) elicits significant, clinically relevant, and lasting motor recovery in chronic stroke survivors more effectively than sham FES. Such recovery is associated to quantitative signatures of functional neuroplasticity. BCI patients exhibit a significant functional recovery after the intervention, which remains 6–12 months after the end of therapy. Electroencephalography analysis pinpoints significant differences in favor of the BCI group, mainly consisting in an increase in functional connectivity between motor areas in the affected hemisphere. This increase is significantly correlated with functional improvement. Results illustrate how a BCI–FES therapy can drive significant functional recovery and purposeful plasticity thanks to contingent activation of body natural efferent and afferent pathways

    Differential contributions of subthalamic beta rhythms and 1/f broadband activity to motor symptoms in Parkinson's disease.

    Get PDF
    Excessive beta oscillatory activity in the subthalamic nucleus (STN) is linked to Parkinson's Disease (PD) motor symptoms. However, previous works have been inconsistent regarding the functional role of beta activity in untreated Parkinsonian states, questioning such role. We hypothesized that this inconsistency is due to the influence of electrophysiological broadband activity -a neurophysiological indicator of synaptic excitation/inhibition ratio- that could confound measurements of beta activity in STN recordings. Here we propose a data-driven, automatic and individualized mathematical model that disentangles beta activity and 1/f broadband activity in the STN power spectrum, and investigate the link between these individual components and motor symptoms in thirteen Parkinsonian patients. We show, using both modeled and actual data, how beta oscillatory activity significantly correlates with motor symptoms (bradykinesia and rigidity) only when broadband activity is not considered in the biomarker estimations, providing solid evidence that oscillatory beta activity does correlate with motor symptoms in untreated PD states as well as the significant impact of broadband activity. These findings emphasize the importance of data-driven models and the identification of better biomarkers for characterizing symptom severity and closed-loop applications
    • 

    corecore