2,918 research outputs found
An adaptive prefix-assignment technique for symmetry reduction
This paper presents a technique for symmetry reduction that adaptively
assigns a prefix of variables in a system of constraints so that the generated
prefix-assignments are pairwise nonisomorphic under the action of the symmetry
group of the system. The technique is based on McKay's canonical extension
framework [J.~Algorithms 26 (1998), no.~2, 306--324]. Among key features of the
technique are (i) adaptability---the prefix sequence can be user-prescribed and
truncated for compatibility with the group of symmetries; (ii)
parallelizability---prefix-assignments can be processed in parallel
independently of each other; (iii) versatility---the method is applicable
whenever the group of symmetries can be concisely represented as the
automorphism group of a vertex-colored graph; and (iv) implementability---the
method can be implemented relying on a canonical labeling map for
vertex-colored graphs as the only nontrivial subroutine. To demonstrate the
practical applicability of our technique, we have prepared an experimental
open-source implementation of the technique and carry out a set of experiments
that demonstrate ability to reduce symmetry on hard instances. Furthermore, we
demonstrate that the implementation effectively parallelizes to compute
clusters with multiple nodes via a message-passing interface.Comment: Updated manuscript submitted for revie
Tools for delivering entomopathogenic fungi to malaria mosquitoes: effects of delivery surfaces on fungal efficacy and persistence.
BACKGROUND\ud
\ud
Entomopathogenic fungi infection on malaria vectors increases daily mortality rates and thus represents a control measure that could be used in integrated programmes alongside insecticide-treated bed nets (ITNs) and indoor residual spraying (IRS). Before entomopathogenic fungi can be integrated into control programmes, an effective delivery system must be developed.\ud
\ud
METHODS\ud
\ud
The efficacy of Metarhizium anisopliae ICIPE-30 and Beauveria bassiana I93-825 (IMI 391510) (2 × 10(10) conidia m(-2)) applied on mud panels (simulating walls of traditional Tanzanian houses), black cotton cloth and polyester netting was evaluated against adult Anopheles gambiae sensu stricto. Mosquitoes were exposed to the treated surfaces 2, 14 and 28 d after conidia were applied. Survival of mosquitoes was monitored daily.\ud
\ud
RESULTS\ud
\ud
All fungal treatments caused a significantly increased mortality in the exposed mosquitoes, descending with time since fungal application. Mosquitoes exposed to M. anisopliae conidia on mud panels had a greater daily risk of dying compared to those exposed to conidia on either netting or cotton cloth (p < 0.001). Mosquitoes exposed to B. bassiana conidia on mud panels or cotton cloth had similar daily risk of death (p = 0.14), and a higher risk than those exposed to treated polyester netting (p < 0.001). Residual activity of fungi declined over time; however, conidia remained pathogenic at 28 d post application, and were able to infect and kill 73 - 82% of mosquitoes within 14 d.\ud
\ud
CONCLUSION\ud
\ud
Both fungal isolates reduced mosquito survival on immediate exposure and up to 28 d after application. Conidia were more effective when applied on mud panels and cotton cloth compared with polyester netting. Cotton cloth and mud, therefore, represent potential substrates for delivering fungi to mosquitoes in the field
A New Model of Sovereignty in the Contemporary Era of Integrated Global Commerce
Existing legal scholarship does not offer an effective or comprehensive definition of sovereignty. Sovereignty, however, matters. Indeed, many have lived and died for it; the term likewise appears with remarkable frequency in both academic and popular discourse. But, sovereignty is not what it used to be. The evolution of globalization generally, and transformations in global commerce specifically, have sutured together the peoples of the world-conventional nation-states and Indigenous groups alike--permanently altering the sovereignty of each. These developments make it that much more imperative to incorporate a functional definition of sovereignty into legal scholarship. But, given the complexities of sovereignty, the tools of law alone are insufficient to generate such a definition. Here anthropology provides a unique and powerful insight to supplement those shortcomings. An evidence-based model through the collaborative lenses of law and anthropology shows that sovereignty and culture have become fused in a mechanism driven by the regulation of cross-border capital. This model empowers the policy makers of conventional states and Indigenous groups to more explicitly, efficiently, and effectively integrate different forms of value--both economic and social
Non-Abelian statistics and topological quantum information processing in 1D wire networks
Topological quantum computation provides an elegant way around decoherence,
as one encodes quantum information in a non-local fashion that the environment
finds difficult to corrupt. Here we establish that one of the key
operations---braiding of non-Abelian anyons---can be implemented in
one-dimensional semiconductor wire networks. Previous work [Lutchyn et al.,
arXiv:1002.4033 and Oreg et al., arXiv:1003.1145] provided a recipe for driving
semiconducting wires into a topological phase supporting long-sought particles
known as Majorana fermions that can store topologically protected quantum
information. Majorana fermions in this setting can be transported, created, and
fused by applying locally tunable gates to the wire. More importantly, we show
that networks of such wires allow braiding of Majorana fermions and that they
exhibit non-Abelian statistics like vortices in a p+ip superconductor. We
propose experimental setups that enable the Majorana fusion rules to be probed,
along with networks that allow for efficient exchange of arbitrary numbers of
Majorana fermions. This work paves a new path forward in topological quantum
computation that benefits from physical transparency and experimental realism.Comment: 6 pages + 17 pages of Supp. Mat.; 10 figures. Supp. Mat. has doubled
in size to establish results more rigorously; many other improvements as wel
Subretinal pigment epithelial deposition of Drusen components including hydroxyapatite in a primary cell culture model
Purpose: Extracellular deposits containing hydroxyapatite, lipids, proteins, and trace metals that form between the basal lamina of the RPE and the inner collagenous layer of Bruch's membrane are hallmarks of early AMD. We examined whether cultured RPE cells could produce extracellular deposits containing all of these molecular components. Methods: Retinal pigment epithelium cells isolated from freshly enucleated porcine eyes were cultured on Transwell membranes for up to 6 months. Deposit composition and structure were characterized using light, fluorescence, and electron microscopy; synchrotron x-ray diffraction and x-ray fluorescence; secondary ion mass spectroscopy; and immunohistochemistry. Results: Apparently functional primary RPE cells, when cultured on 10-μm-thick inserts with 0.4-μm-diameter pores, can produce sub-RPE deposits that contain hydroxyapatite, lipids, proteins, and trace elements, without outer segment supplementation, by 12 weeks. Conclusions: The data suggest that sub-RPE deposit formation is initiated, and probably regulated, by the RPE, as well as the loss of permeability of the Bruch's membrane and choriocapillaris complex associated with age and early AMD. This cell culture model of early AMD lesions provides a novel system for testing new therapeutic interventions against sub-RPE deposit formation, an event occurring well in advance of the onset of vision loss
Epiparasitic plants specialized on arbuscular mycorrhizal fungi
Over 400 non-photosynthetic species from 10 families of vascular plants obtain their carbon from fungi and are thus defined as myco-heterotrophs. Many of these plants are epiparasitic on green plants from which they obtain carbon by 'cheating' shared mycorrhizal fungi. Epiparasitic plants examined to date depend on ectomycorrhizal fungi for carbon transfer and exhibit exceptional specificity for these fungi, but for most myco-heterotrophs neither the identity of the fungi nor the sources of their carbon are known. Because many myco-heterotrophs grow in forests dominated by plants associated with arbuscular mycorrhizal fungi (AMF; phylum Glomeromycota), we proposed that epiparasitism would occur also between plants linked by AMF. On a global scale AMF form the most widespread mycorrhizae, thus the ability of plants to cheat this symbiosis would be highly significant. We analysed mycorrhizae from three populations of Arachnitis uniflora (Corsiaceae, Monocotyledonae), five Voyria species and one Voyriella species (Gentianaceae, Dicotyledonae), and neighbouring green plants. Here we show that non-photosynthetic plants associate with AMF and can display the characteristic specificity of epiparasites. This suggests that AMF mediate significant inter-plant carbon transfer in nature
Protecting eyewitness evidence: Examining the efficacy of a self-administered interview tool
Given the crucial role of eyewitness evidence, statements should be obtained as soon as possible after an incident. This is not always achieved due to demands on police resources. Two studies trace the development of a new tool, the Self-Administered Interview (SAI), designed to elicit a comprehensive initial statement. In Study 1, SAI participants reported more correct details than participants who provided a free recall account, and performed at the same level as participants given a Cognitive Interview. In Study 2, participants viewed a simulated crime and half recorded their statement using the SAI. After a delay of 1 week, all participants completed a free recall test. SAI participants recalled more correct details in the delayed recall task than control participants
Modelling chemistry in the nocturnal boundary layer above tropical rainforest and a generalised effective nocturnal ozone deposition velocity for sub-ppbv NOx conditions
Measurements of atmospheric composition have been made over a remote rainforest landscape. A box model has previously been demonstrated to model the observed daytime chemistry well. However the box model is unable to explain the nocturnal measurements of relatively high [NO] and [O3], but relatively low observed [NO2]. It is shown that a one-dimensional (1-D) column model with simple O3 -NOx chemistry and a simple representation of vertical transport is able to explain the observed nocturnal concentrations and predict the likely vertical profiles of these species in the nocturnal boundary layer (NBL). Concentrations of tracers carried over from the end of the night can affect the atmospheric chemistry of the following day. To ascertain the anomaly introduced by using the box model to represent the NBL, vertically-averaged NBL concentrations at the end of the night are compared between the 1-D model and the box model. It is found that, under low to medium [NOx] conditions (NOx <1 ppbv), a simple parametrisation can be used to modify the box model deposition velocity of ozone, in order to achieve good agreement between the box and 1-D models for these end-of-night concentrations of NOx and O3. This parametrisation would could also be used in global climate-chemistry models with limited vertical resolution near the surface. Box-model results for the following day differ significantly if this effective nocturnal deposition velocity for ozone is implemented; for instance, there is a 9% increase in the following day’s peak ozone concentration. However under medium to high [NOx] conditions (NOx > 1 ppbv), the effect on the chemistry due to the vertical distribution of the species means no box model can adequately represent chemistry in the NBL without modifying reaction rate constants
A road to reality with topological superconductors
Topological states of matter are a source of low-energy quasiparticles, bound
to a defect or propagating along the surface. In a superconductor these are
Majorana fermions, described by a real rather than a complex wave function. The
absence of complex phase factors promises protection against decoherence in
quantum computations based on topological superconductivity. This is a tutorial
style introduction written for a Nature Physics focus issue on topological
matter.Comment: pre-copy-editing, author-produced version of the published paper: 4
pages, 2 figure
- …
