154 research outputs found

    Bistability in Apoptosis by Receptor Clustering

    Get PDF
    Apoptosis is a highly regulated cell death mechanism involved in many physiological processes. A key component of extrinsically activated apoptosis is the death receptor Fas, which, on binding to its cognate ligand FasL, oligomerize to form the death-inducing signaling complex. Motivated by recent experimental data, we propose a mathematical model of death ligand-receptor dynamics where FasL acts as a clustering agent for Fas, which form locally stable signaling platforms through proximity-induced receptor interactions. Significantly, the model exhibits hysteresis, providing an upstream mechanism for bistability and robustness. At low receptor concentrations, the bistability is contingent on the trimerism of FasL. Moreover, irreversible bistability, representing a committed cell death decision, emerges at high concentrations, which may be achieved through receptor pre-association or localization onto membrane lipid rafts. Thus, our model provides a novel theory for these observed biological phenomena within the unified context of bistability. Importantly, as Fas interactions initiate the extrinsic apoptotic pathway, our model also suggests a mechanism by which cells may function as bistable life/death switches independently of any such dynamics in their downstream components. Our results highlight the role of death receptors in deciding cell fate and add to the signal processing capabilities attributed to receptor clustering.Comment: Accepted by PLoS Comput Bio

    Formation of left-handed helices by C2′-fluorinated nucleic acids under physiological salt conditions

    Full text link
    Recent findings in cell biology have rekindled interest in Z-DNA, the left-handed helical form of DNA. We report here that two minimally modified nucleosides, 2'F-araC and 2'F-riboG, induce the formation of the Z-form under low ionic strength. We show that oligomers entirely made of these two nucleosides exclusively produce left-handed duplexes that bind to the Zα domain of ADAR1. The effect of the two nucleotides is so dramatic that Z-form duplexes are the only species observed in 10 mM sodium phosphate buffer and neutral pH, and no B-form is observed at any temperature. Hence, in contrast to other studies reporting formation of Z/B-form equilibria by a preference for purine glycosidic angles in syn, our NMR and computational work revealed that sequential 2'F…H2N and intramolecular 3'H…N3' interactions stabilize the left-handed helix. The equilibrium between B- and Z- forms is slow in the 19F NMR time scale (≥ms), and each conformation exhibited unprecedented chemical shift differences in the 19F signals. This observation led to a reliable estimation of the relative population of B and Z species and enabled us to monitor B-Z transitions under different conditions. The unique features of 2'F-modified DNA should thus be a valuable addition to existing techniques for specific detection of new Z-binding proteins and ligands

    The Twin-Arginine Translocation Pathway in α-Proteobacteria Is Functionally Preserved Irrespective of Genomic and Regulatory Divergence

    Get PDF
    The twin-arginine translocation (Tat) pathway exports fully folded proteins out of the cytoplasm of Gram-negative and Gram-positive bacteria. Although much progress has been made in unraveling the molecular mechanism and biochemical characterization of the Tat system, little is known concerning its functionality and biological role to confer adaptive skills, symbiosis or pathogenesis in the α-proteobacteria class. A comparative genomic analysis in the α-proteobacteria class confirmed the presence of tatA, tatB, and tatC genes in almost all genomes, but significant variations in gene synteny and rearrangements were found in the order Rickettsiales with respect to the typically described operon organization. Transcription of tat genes was confirmed for Anaplasma marginale str. St. Maries and Brucella abortus 2308, two α-proteobacteria with full and partial intracellular lifestyles, respectively. The tat genes of A. marginale are scattered throughout the genome, in contrast to the more generalized operon organization. Particularly, tatA showed an approximately 20-fold increase in mRNA levels relative to tatB and tatC. We showed Tat functionality in B. abortus 2308 for the first time, and confirmed conservation of functionality in A. marginale. We present the first experimental description of the Tat system in the Anaplasmataceae and Brucellaceae families. In particular, in A. marginale Tat functionality is conserved despite operon splitting as a consequence of genome rearrangements. Further studies will be required to understand how the proper stoichiometry of the Tat protein complex and its biological role are achieved. In addition, the predicted substrates might be the evidence of role of the Tat translocation system in the transition process from a free-living to a parasitic lifestyle in these α-proteobacteria

    All Is Not Loss: Plant Biodiversity in the Anthropocene

    Get PDF
    Anthropogenic global changes in biodiversity are generally portrayed in terms of massive native species losses or invasions caused by recent human disturbance. Yet these biodiversity changes and others caused directly by human populations and their use of land tend to co-occur as long-term biodiversity change processes in the Anthropocene. Here we explore contemporary anthropogenic global patterns in vascular plant species richness at regional landscape scales by combining spatially explicit models and estimates for native species loss together with gains in exotics caused by species invasions and the introduction of agricultural domesticates and ornamental exotic plants. The patterns thus derived confirm that while native losses are likely significant across at least half of Earth's ice-free land, model predictions indicate that plant species richness has increased overall in most regional landscapes, mostly because species invasions tend to exceed native losses. While global observing systems and models that integrate anthropogenic species loss, introduction and invasion at regional landscape scales remain at an early stage of development, integrating predictions from existing models within a single assessment confirms their vast global extent and significance while revealing novel patterns and their potential drivers. Effective global stewardship of plant biodiversity in the Anthropocene will require integrated frameworks for observing, modeling and forecasting the different forms of anthropogenic biodiversity change processes at regional landscape scales, towards conserving biodiversity within the novel plant communities created and sustained by human systems

    Klebsiella pneumoniae Multiresistance Plasmid pMET1: Similarity with the Yersinia pestis Plasmid pCRY and Integrative Conjugative Elements

    Get PDF
    Dissemination of antimicrobial resistance genes has become an important public health and biodefense threat. Plasmids are important contributors to the rapid acquisition of antibiotic resistance by pathogenic bacteria.The nucleotide sequence of the Klebsiella pneumoniae multiresistance plasmid pMET1 comprises 41,723 bp and includes Tn1331.2, a transposon that carries the bla(TEM-1) gene and a perfect duplication of a 3-kbp region including the aac(6')-Ib, aadA1, and bla(OXA-9) genes. The replication region of pMET1 has been identified. Replication is independent of DNA polymerase I, and the replication region is highly related to that of the cryptic Yersinia pestis 91001 plasmid pCRY. The potential partition region has the general organization known as the parFG locus. The self-transmissible pMET1 plasmid includes a type IV secretion system consisting of proteins that make up the mating pair formation complex (Mpf) and the DNA transfer (Dtr) system. The Mpf is highly related to those in the plasmid pCRY, the mobilizable high-pathogenicity island from E. coli ECOR31 (HPI(ECOR31)), which has been proposed to be an integrative conjugative element (ICE) progenitor of high-pathogenicity islands in other Enterobacteriaceae including Yersinia species, and ICE(Kp1), an ICE found in a K. pneumoniae strain causing primary liver abscess. The Dtr MobB and MobC proteins are highly related to those of pCRY, but the endonuclease is related to that of plasmid pK245 and has no significant homology with the protein of similar function in pCRY. The region upstream of mobB includes the putative oriT and shares 90% identity with the same region in the HPI(ECOR31).The comparative analyses of pMET1 with pCRY, HPI(ECOR31), and ICE(Kp1 )show a very active rate of genetic exchanges between Enterobacteriaceae including Yersinia species, which represents a high public health and biodefense threat due to transfer of multiple resistance genes to pathogenic Yersinia strains

    Adaptive Radiation in Mediterranean Cistus (Cistaceae)

    Get PDF
    lineage consists of 12 species primarily distributed in Mediterranean habitats and is herein subject to analysis. lineages), which display asymmetric characteristics: number of species (2 vs. 10), leaf morphologies (linear vs. linear to ovate), floral characteristics (small, three-sepalled vs. small to large, three- or five-sepalled flowers) and ecological attributes (low-land vs. low-land to mountain environments). A positive phenotype-environment correlation has been detected by historical reconstructions of morphological traits (leaf shape, leaf labdanum content and leaf pubescence). Ecological evidence indicates that modifications of leaf shape and size, coupled with differences in labdanum secretion and pubescence density, appear to be related to success of new species in different Mediterranean habitats.

    Women's Education Level, Maternal Health Facilities, Abortion Legislation and Maternal Deaths: A Natural Experiment in Chile from 1957 to 2007

    Get PDF
    The aim of this study was to assess the main factors related to maternal mortality reduction in large time series available in Chile in context of the United Nations' Millennium Development Goals (MDGs).Time series of maternal mortality ratio (MMR) from official data (National Institute of Statistics, 1957-2007) along with parallel time series of education years, income per capita, fertility rate (TFR), birth order, clean water, sanitary sewer, and delivery by skilled attendants were analysed using autoregressive models (ARIMA). Historical changes on the mortality trend including the effect of different educational and maternal health policies implemented in 1965, and legislation that prohibited abortion in 1989 were assessed utilizing segmented regression techniques.During the 50-year study period, the MMR decreased from 293.7 to 18.2/100,000 live births, a decrease of 93.8%. Women's education level modulated the effects of TFR, birth order, delivery by skilled attendants, clean water, and sanitary sewer access. In the fully adjusted model, for every additional year of maternal education there was a corresponding decrease in the MMR of 29.3/100,000 live births. A rapid phase of decline between 1965 and 1981 (-13.29/100,000 live births each year) and a slow phase between 1981 and 2007 (-1.59/100,000 live births each year) were identified. After abortion was prohibited, the MMR decreased from 41.3 to 12.7 per 100,000 live births (-69.2%). The slope of the MMR did not appear to be altered by the change in abortion law.Increasing education level appears to favourably impact the downward trend in the MMR, modulating other key factors such as access and utilization of maternal health facilities, changes in women's reproductive behaviour and improvements of the sanitary system. Consequently, different MDGs can act synergistically to improve maternal health. The reduction in the MMR is not related to the legal status of abortion

    Acidithiobacillus ferrooxidans metabolism: from genome sequence to industrial applications

    Get PDF
    <p>Abstract</p> <p>Background</p> <p><it>Acidithiobacillus ferrooxidans </it>is a major participant in consortia of microorganisms used for the industrial recovery of copper (bioleaching or biomining). It is a chemolithoautrophic, γ-proteobacterium using energy from the oxidation of iron- and sulfur-containing minerals for growth. It thrives at extremely low pH (pH 1–2) and fixes both carbon and nitrogen from the atmosphere. It solubilizes copper and other metals from rocks and plays an important role in nutrient and metal biogeochemical cycling in acid environments. The lack of a well-developed system for genetic manipulation has prevented thorough exploration of its physiology. Also, confusion has been caused by prior metabolic models constructed based upon the examination of multiple, and sometimes distantly related, strains of the microorganism.</p> <p>Results</p> <p>The genome of the type strain <it>A. ferrooxidans </it>ATCC 23270 was sequenced and annotated to identify general features and provide a framework for <it>in silico </it>metabolic reconstruction. Earlier models of iron and sulfur oxidation, biofilm formation, quorum sensing, inorganic ion uptake, and amino acid metabolism are confirmed and extended. Initial models are presented for central carbon metabolism, anaerobic metabolism (including sulfur reduction, hydrogen metabolism and nitrogen fixation), stress responses, DNA repair, and metal and toxic compound fluxes.</p> <p>Conclusion</p> <p>Bioinformatics analysis provides a valuable platform for gene discovery and functional prediction that helps explain the activity of <it>A. ferrooxidans </it>in industrial bioleaching and its role as a primary producer in acidic environments. An analysis of the genome of the type strain provides a coherent view of its gene content and metabolic potential.</p
    • …
    corecore