389 research outputs found

    Near-field examination of perovskite-based superlenses and superlens-enhanced probe-object coupling

    Get PDF
    A planar slab of negative index material works as a superlens with sub-diffraction-limited imaging resolution, since propagating waves are focused and, moreover, evanescent waves are reconstructed in the image plane. Here, we demonstrate a superlens for electric evanescent fields with low losses using perovskites in the mid-infrared regime. The combination of near-field microscopy with a tunable free-electron laser allows us to address precisely the polariton modes, which are critical for super-resolution imaging. We spectrally study the lateral and vertical distributions of evanescent waves around the image plane of such a lens, and achieve imaging resolution of wavelength/14 at the superlensing wavelength. Interestingly, at certain distances between the probe and sample surface, we observe a maximum of these evanescent fields. Comparisons with numerical simulations indicate that this maximum originates from an enhanced coupling between probe and object, which might be applicable for multifunctional circuits, infrared spectroscopy, and thermal sensors.Comment: 20 pages, 6 figures, published as open access article in Nature Communications (see http://www.nature.com/ncomms/

    The Braincase of the Basal Sauropod Dinosaur Spinophorosaurus and 3D Reconstructions of the Cranial Endocast and Inner Ear

    Get PDF
    Background: Sauropod dinosaurs were the largest animals ever to walk on land, and, as a result, the evolution of their remarkable adaptations has been of great interest. The braincase is of particular interest because it houses the brain and inner ear. However, only a few studies of these structures in sauropods are available to date. Because of the phylogenetic position of Spinophorosaurus nigerensis as a basal eusauropod, the braincase has the potential to provide key evidence on the evolutionary transition relative to other dinosaurs. Methodology/Principal Findings: The only known braincase of Spinophorosaurus (‘Argiles de l'Irhazer’, Irhazer Group; Agadez region, Niger) differs significantly from those of the Jurassic sauropods examined, except potentially for Atlasaurus imelakei (Tilougguit Formation, Morocco). The basisphenoids of Spinophorosaurus and Atlasaurus bear basipterygoid processes that are comparable in being directed strongly caudally. The Spinophorosaurus specimen was CT scanned, and 3D renderings of the cranial endocast and inner-ear system were generated. The endocast resembles that of most other sauropods in having well-marked pontine and cerebral flexures, a large and oblong pituitary fossa, and in having the brain structure obscured by the former existence of relatively thick meninges and dural venous sinuses. The labyrinth is characterized by long and proportionally slender semicircular canals. This condition recalls, in particular, that of the basal non-sauropod sauropodomorph Massospondylus and the basal titanosauriform Giraffatitan. Conclusions/Significance: Spinophorosaurus has a moderately derived paleoneuroanatomical pattern. In contrast to what might be expected early within a lineage leading to plant-eating graviportal quadrupeds, Spinophorosaurus and other (but not all) sauropodomorphs show no reduction of the vestibular apparatus of the inner ear. This character-state is possibly a primitive retention in Spinophorosaurus, but due the scarcity of data it remains unclear whether it is also the case in the various later sauropods in which it is present or whether it has developed homoplastically in these taxa. Any interpretations remain tentative pending the more comprehensive quantitative analysis underway, but the size and morphology of the labyrinth of sauropodomorphs may be related to neck length and mobility, among other factors.The sojourns of Dr. Knoll in the Museum für Naturkunde (Berlin) were partly funded by the Alexander von Humboldt Foundation through a sponsorship of renewed research stay in Germany and by the European Community Research Infrastructure Action under the FP7 “Capacities” Program through a Synthesys grant (http://www.synthesys.info/). Dr. Knoll is currently supported by the Ramón y Cajal Program. This is a contribution to the research project CGL2009-12143, from the Ministerio de Ciencia e Innovación (Madrid), conducted by Dr. Knoll (PI), Dr. Witmer, and Dr. Schwarz-Wings. Dr. Witmer and Dr. Ridgely acknowledge funding support from the United States National Science Foundation (IBN-9601174, IBN-0343744, IOB-0517257) and the Ohio University Heritage College of Osteopathic Medicine. The Ohio Supercomputing Center also provided support.Peer reviewe

    Scans for signatures of selection in Russian cattle breed genomes reveal new candidate genes for environmental adaptation and acclimation

    Get PDF
    Domestication and selective breeding has resulted in over 1000 extant cattle breeds. Many of these breeds do not excel in important traits but are adapted to local environments. These adaptations are a valuable source of genetic material for efforts to improve commercial breeds. As a step toward this goal we identified candidate regions to be under selection in genomes of nine Russian native cattle breeds adapted to survive in harsh climates. After comparing our data to other breeds of European and Asian origins we found known and novel candidate genes that could potentially be related to domestication, economically important traits and environmental adaptations in cattle. The Russian cattle breed genomes contained regions under putative selection with genes that may be related to adaptations to harsh environments (e.g., AQP5, RAD50, and RETREG1). We found genomic signatures of selective sweeps near key genes related to economically important traits, such as the milk production (e.g., DGAT1, ABCG2), growth (e.g., XKR4), and reproduction (e.g., CSF2). Our data point to candidate genes which should be included in future studies attempting to identify genes to improve the extant breeds and facilitate generation of commercial breeds that fit better into the environments of Russia and other countries with similar climates

    QGP Theory: Status and Perspectives

    Get PDF
    The current status of Quark-Gluon-Plasma Theory is reviewed. Special emphasis is placed on QGP signatures, the interpretation of current data and what to expect from RHIC in the near future.Comment: 20 pages, invited overview talk at the 4th International Conference on the Physcis and Astrophysics of the Quark-Gluon-Plasma, November 2001, Jaipur, India, to appear in Praman

    The Impact of Oxygen on Metabolic Evolution: A Chemoinformatic Investigation

    Get PDF
    The appearance of planetary oxygen likely transformed the chemical and biochemical makeup of life and probably triggered episodes of organismal diversification. Here we use chemoinformatic methods to explore the impact of the rise of oxygen on metabolic evolution. We undertake a comprehensive comparative analysis of structures, chemical properties and chemical reactions of anaerobic and aerobic metabolites. The results indicate that aerobic metabolism has expanded the structural and chemical space of metabolites considerably, including the appearance of 130 novel molecular scaffolds. The molecular functions of these metabolites are mainly associated with derived aspects of cellular life, such as signal transfer, defense against biotic factors, and protection of organisms from oxidation. Moreover, aerobic metabolites are more hydrophobic and rigid than anaerobic compounds, suggesting they are better fit to modulate membrane functions and to serve as transmembrane signaling factors. Since higher organisms depend largely on sophisticated membrane-enabled functions and intercellular signaling systems, the metabolic developments brought about by oxygen benefit the diversity of cellular makeup and the complexity of cellular organization as well. These findings enhance our understanding of the molecular link between oxygen and evolution. They also show the significance of chemoinformatics in addressing basic biological questions

    Ingestion of micronutrient fortified breakfast cereal has no influence on immune function in healthy children: A randomized controlled trial

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>This study investigated the influence of 2-months ingestion of an "immune" nutrient fortified breakfast cereal on immune function and upper respiratory tract infection (URTI) in healthy children during the winter season.</p> <p>Methods</p> <p>Subjects included 73 children (N = 42 males, N = 31 females) ranging in age from 7 to 13 years (mean ± SD age, 9.9 ± 1.7 years), and 65 completed all phases of the study. Subjects were randomized to one of three groups--low, moderate, or high fortification--with breakfast cereals administered in double blinded fashion. The "medium" fortified cereal contained B-complex vitamins, vitamins A and C, iron, zinc, and calcium, with the addition of vitamin E and higher amounts of vitamins A and C, and zinc in the "high" group. Immune measures included delayed-typed hypersensitivity, global IgG antibody response over four weeks to pneumococcal vaccination, salivary IgA concentration, natural killer cell activity, and granulocyte phagocytosis and oxidative burst activity. Subjects under parental supervision filled in a daily log using URTI symptoms codes.</p> <p>Results</p> <p>Subjects ingested 3337 ± 851 g cereal during the 2-month study, which represented 14% of total diet energy intake and 20-85% of selected vitamins and minerals. Despite significant increases in nutrient intake, URTI rates and pre- to- post-study changes in all immune function measures did not differ between groups.</p> <p>Conclusions</p> <p>Data from this study indicate that ingestion of breakfast cereal fortified with a micronutrient blend for two winter months by healthy, growing children does not significantly influence biomarkers for immune function or URTI rates.</p
    corecore