249 research outputs found
The Role of Bile in the Regulation of Exocrine Pancreatic Secretion
As early as 1926 Mellanby (1) was able to show that introduction of bile into the duodenum of anesthetized cats produces a copious flow of pancreatic juice. In conscious dogs, Ivy & Lueth (2) reported, bile is only a weak stimulant of pancreatic secretion. Diversion of bile from the duodenum, however, did not influence pancreatic volume secretion stimulated by a meal (3,4). Moreover, Thomas & Crider (5) observed that bile not only failed to stimulate the secretion of pancreatic juice but also abolished the pancreatic response to intraduodenally administered peptone or soap
Ice sheets as a missing source of silica to the polar oceans
Ice sheets play a more important role in the global silicon cycle than previously appreciated. Input of dissolved and amorphous particulate silica into natural waters stimulates the growth of diatoms. Here we measure dissolved and amorphous silica in Greenland Ice Sheet meltwaters and icebergs, demonstrating the potential for high ice sheet export. Our dissolved and amorphous silica flux is 0.20 (0.06-0.79) Tmol year(-1), ∼50% of the input from Arctic rivers. Amorphous silica comprises >95% of this flux and is highly soluble in sea water, as indicated by a significant increase in dissolved silica across a fjord salinity gradient. Retreating palaeo ice sheets were therefore likely responsible for high dissolved and amorphous silica fluxes into the ocean during the last deglaciation, reaching values of ∼5.5 Tmol year(-1), similar to the estimated export from palaeo rivers. These elevated silica fluxes may explain high diatom productivity observed during the last glacial-interglacial period
Влияние фосфатных связующих на физико-механические свойства периклазохромитовых огнеупоров
У данній статті наведено та порівняно фізико-механічні властивості периклазо-хромітових матеріалів в залежності від різних типів фосфатних зв’язуючих та введення різних домішок. Визначено, що найбільш раціональним є введення триполіфосфату натрію.In given clause are resulted and the physycal-mechanical properties periclase-cgromite of materials are compared depending on different of types phosphate binding and introduction of the various additives. Is determined, that most rational is the introduction treepolyphosphate sodume
Primate TNF Promoters Reveal Markers of Phylogeny and Evolution of Innate Immunity
Background. Tumor necrosis factor (TNF) is a critical cytokine in the immune response whose transcriptional activation is controlled by a proximal promoter region that is highly conserved in mammals and, in particular, primates. Specific single nucleotide polymorphisms (SNPs) upstream of the proximal human TNF promoter have been identified, which are markers of human ancestry.
Methodology/Principal findings. Using a comparative genomics approach we show that certain fixed genetic differences in the TNF promoter serve as markers of primate speciation. We also demonstrate that distinct alleles of most human TNF promoter SNPs are identical to fixed nucleotides in primate TNF promoters. Furthermore, we identify fixed genetic differences within the proximal TNF promoters of Asian apes that do not occur in African ape or human TNF promoters. Strikingly, protein-DNA binding assays and gene reporter assays comparing these Asian ape TNF promoters to African ape and human TNF promoters demonstrate that, unlike the fixed differences that we define that are associated with primate phylogeny, these Asian ape-specific fixed differences impair transcription factor binding at an Sp1 site and decrease TNF transcription induced by bacterial stimulation of macrophages.
Conclusions/significance. Here, we have presented the broadest interspecies comparison of a regulatory region of an innate immune response gene to date. We have characterized nucleotide positions in Asian ape TNF promoters that underlie functional changes in cell type- and stimulus-specific activation of the TNF gene. We have also identified ancestral TNF promoter nucleotide states in the primate lineage that correspond to human SNP alleles. These findings may reflect evolution of Asian and African apes under a distinct set of infectious disease pressures involving the innate immune response and TNF
Human Population Differentiation Is Strongly Correlated with Local Recombination Rate
Allele frequency differences across populations can provide valuable information both for studying population structure and for identifying loci that have been targets of natural selection. Here, we examine the relationship between recombination rate and population differentiation in humans by analyzing two uniformly-ascertained, whole-genome data sets. We find that population differentiation as assessed by inter-continental FST shows negative correlation with recombination rate, with FST reduced by 10% in the tenth of the genome with the highest recombination rate compared with the tenth of the genome with the lowest recombination rate (P≪10−12). This pattern cannot be explained by the mutagenic properties of recombination and instead must reflect the impact of selection in the last 100,000 years since human continental populations split. The correlation between recombination rate and FST has a qualitatively different relationship for FST between African and non-African populations and for FST between European and East Asian populations, suggesting varying levels or types of selection in different epochs of human history
Pervasive Hitchhiking at Coding and Regulatory Sites in Humans
Much effort and interest have focused on assessing the importance of natural
selection, particularly positive natural selection, in shaping the human genome.
Although scans for positive selection have identified candidate loci that may be
associated with positive selection in humans, such scans do not indicate whether
adaptation is frequent in general in humans. Studies based on the reasoning of
the MacDonald–Kreitman test, which, in principle, can be used to
evaluate the extent of positive selection, suggested that adaptation is
detectable in the human genome but that it is less common than in Drosophila or
Escherichia coli. Both positive and purifying natural
selection at functional sites should affect levels and patterns of polymorphism
at linked nonfunctional sites. Here, we search for these effects by analyzing
patterns of neutral polymorphism in humans in relation to the rates of
recombination, functional density, and functional divergence with chimpanzees.
We find that the levels of neutral polymorphism are lower in the regions of
lower recombination and in the regions of higher functional density or
divergence. These correlations persist after controlling for the variation in GC
content, density of simple repeats, selective constraint, mutation rate, and
depth of sequencing coverage. We argue that these results are most plausibly
explained by the effects of natural selection at functional
sites—either recurrent selective sweeps or background
selection—on the levels of linked neutral polymorphism. Natural
selection at both coding and regulatory sites appears to affect linked neutral
polymorphism, reducing neutral polymorphism by 6% genome-wide and by
11% in the gene-rich half of the human genome. These findings suggest
that the effects of natural selection at linked sites cannot be ignored in the
study of neutral human polymorphism
Effect of solution saturation state and temperature on diopside dissolution
Steady-state dissolution rates of diopside are measured as a function of solution saturation state using a titanium flow-through reactor at pH 7.5 and temperature ranging from 125 to 175°C. Diopside dissolved stoichiometrically under all experimental conditions and rates were not dependent on sample history. At each temperature, rates continuously decreased by two orders of magnitude as equilibrium was approached and did not exhibit a dissolution plateau of constant rates at high degrees of undersaturation. The variation of diopside dissolution rates with solution saturation can be described equally well with a ion exchange model based on transition state theory or pit nucleation model based on crystal growth/dissolution theory from 125 to 175°C. At 175°C, both models over predict dissolution rates by two orders of magnitude indicating that a secondary phase precipitated in the experiments. The ion exchange model assumes the formation of a Si-rich, Mg-deficient precursor complex. Lack of dependence of rates on steady-state aqueous calcium concentration supports the formation of such a complex, which is formed by exchange of protons for magnesium ions at the surface. Fit to the experimental data yields [Formula: see text] where the Mg-H exchange coefficient, n = 1.39, the apparent activation energy, E(a )= 332 kJ mol(-1), and the apparent rate constant, k = 10(41.2 )mol diopside cm(-2 )s(-1). Fits to the data with the pit nucleation model suggest that diopside dissolution proceeds through retreat of steps developed by nucleation of pits created homogeneously at the mineral surface or at defect sites, where homogeneous nucleation occurs at lower degrees of saturation than defect-assisted nucleation. Rate expressions for each mechanism (i) were fit to [Formula: see text] where the step edge energy (α) for homogeneously nucleated pits were higher (275 to 65 mJ m(-2)) than the pits nucleated at defects (39 to 65 mJ m(-2)) and the activation energy associated with the temperature dependence of site density and the kinetic coefficient for homogeneously nucleated pits (E(b-homogeneous )= 2.59 × 10(-16 )mJ K(-1)) were lower than the pits nucleated at defects (E(b-defect assisted )= 8.44 × 10(-16 )mJ K(-1))
Estimation of Isolation Times of the Island Species in the Drosophila simulans Complex from Multilocus DNA Sequence Data
Background: The Drosophila simulans species complex continues to serve as an important model system for the study of new species formation. The complex is comprised of the cosmopolitan species, D. simulans, and two island endemics, D. mauritiana and D. sechellia. A substantial amount of effort has gone into reconstructing the natural history of the complex, in part to infer the context in which functional divergence among the species has arisen. In this regard, a key parameter to be estimated is the initial isolation time (t) of each island species. Loci in regions of low recombination have lower divergence within the complex than do other loci, yet divergence from D. melanogaster is similar for both classes. This might reflect gene flow of the lowrecombination loci subsequent to initial isolation, but it might also reflect differential effects of changing population size on the two recombination classes of loci when the low-recombination loci are subject to genetic hitchhiking or pseudohitchhiking Methodology/Principal Findings: New DNA sequence variation data for 17 loci corroborate the prior observation from 13 loci that DNA sequence divergence is reduced in genes of low recombination. Two models are presented to estimate t and other relevant parameters (substitution rate correction factors in lineages leading to the island species and, in the case of the 4-parameter model, the ratio of ancestral to extant effective population size) from the multilocus DNA sequence data. Conclusions/Significance: In general, it appears that both island species were isolated at about the same time, here estimated at,250,000 years ago. It also appears that the difference in divergence patterns of genes in regions of low an
Material stiffness parameters as potential predictors of presence of left ventricle myocardial infarction: 3D echo-based computational modeling study
Venture Capital Investment and Labor Market Performance: New Empirical Evidence for OECD Countries
Anglo-Saxon countries have been successful in the 1990s concerning labor market
performance compared to the former role models Germany and Japan. This reversal in
relative economic performance might be related to idiosyncracies in financial markets with
bank-based financial markets as in Germany and Japan being possibly inferior to stockmarket
based financial markets in turbulent times and when approaching the economic
frontier. A cleavage is related to venture capital markets which are flourishing on Anglo-
Saxon but not on German type financial markets. Venture capital is crucial for financing
structural change, new firms and innovations and therefore possibly also nowadays for
employment growth
- …
