1,142 research outputs found

    Community-acquired pneumonia in the United Kingdom:a call to action

    Get PDF
    Abstract Pneumococcal disease has a high burden in adults in the United Kingdom (UK); however, the total burden is underestimated, principally because most cases of community-acquired pneumonia (CAP) are non-invasive. Research into pneumonia receives poor funding relative to its disease burden (global mortality, disability-adjusted life years, and years lived with disability), ranking just 20 out of 25 for investment in infectious diseases in the UK. The current accuracy of data for establishing incidence rates is questionable, and it is a reflection of the paucity of research that much of the background information available derives from nearly 30 years ago. Given the relationship between CAP and mortality (pneumonia accounts for 29,000 deaths per annum in the UK, and 5–15% of patients hospitalised with CAP die within 30 days of admission), and the increasing threat of antimicrobial resistance associated with inappropriate antibiotic prescribing, such neglect of a highly prevalent problem is concerning. In this Call to Action, we explore the poorly understood burden of CAP in the UK, discuss the importance of an accurate diagnosis and appropriate treatment, and suggest how national collaboration could improve the management of an often life-threatening, yet potentially preventable disease

    Extraordinary human energy consumption and resultant geological impacts beginning around 1950 CE initiated the proposed Anthropocene Epoch

    Get PDF
    Growth in fundamental drivers—energy use, economic productivity and population—can provide quantitative indications of the proposed boundary between the Holocene Epoch and the Anthropocene. Human energy expenditure in the Anthropocene, ~22 zetajoules (ZJ), exceeds that across the prior 11,700 years of the Holocene (~14.6 ZJ), largely through combustion of fossil fuels. The global warming effect during the Anthropocene is more than an order of magnitude greater still. Global human population, their productivity and energy consumption, and most changes impacting the global environment, are highly correlated. This extraordinary outburst of consumption and productivity demonstrates how the Earth System has departed from its Holocene state since ~1950 CE, forcing abrupt physical, chemical and biological changes to the Earth’s stratigraphic record that can be used to justify the proposal for naming a new epoch—the Anthropocene

    All clinically-relevant blood components transmit prion disease following a single blood transfusion: a sheep model of vCJD

    Get PDF
    Variant CJD (vCJD) is an incurable, infectious human disease, likely arising from the consumption of BSE-contaminated meat products. Whilst the epidemic appears to be waning, there is much concern that vCJD infection may be perpetuated in humans by the transfusion of contaminated blood products. Since 2004, several cases of transfusion-associated vCJD transmission have been reported and linked to blood collected from pre-clinically affected donors. Using an animal model in which the disease manifested resembles that of humans affected with vCJD, we examined which blood components used in human medicine are likely to pose the greatest risk of transmitting vCJD via transfusion. We collected two full units of blood from BSE-infected donor animals during the pre-clinical phase of infection. Using methods employed by transfusion services we prepared red cell concentrates, plasma and platelets units (including leucoreduced equivalents). Following transfusion, we showed that all components contain sufficient levels of infectivity to cause disease following only a single transfusion and also that leucoreduction did not prevent disease transmission. These data suggest that all blood components are vectors for prion disease transmission, and highlight the importance of multiple control measures to minimise the risk of human to human transmission of vCJD by blood transfusion

    Molecular evolution of HoxA13 and the multiple origins of limbless morphologies in amphibians and reptiles

    Get PDF
    Developmental processes and their results, morphological characters, are inherited through transmission of genes regulating development. While there is ample evidence that cis-regulatory elements tend to be modular, with sequence segments dedicated to different roles, the situation for proteins is less clear, being particularly complex for transcription factors with multiple functions. Some motifs mediating protein-protein interactions may be exclusive to particular developmental roles, but it is also possible that motifs are mostly shared among different processes. Here we focus on HoxA13, a protein essential for limb development. We asked whether the HoxA13 amino acid sequence evolved similarly in three limbless clades: Gymnophiona, Amphisbaenia and Serpentes. We explored variation in ω (dN/dS) using a maximum-likelihood framework and HoxA13sequences from 47 species. Comparisons of evolutionary models provided low ω global values and no evidence that HoxA13 experienced relaxed selection in limbless clades. Branch-site models failed to detect evidence for positive selection acting on any site along branches of Amphisbaena and Gymnophiona, while three sites were identified in Serpentes. Examination of alignments did not reveal consistent sequence differences between limbed and limbless species. We conclude that HoxA13 has no modules exclusive to limb development, which may be explained by its involvement in multiple developmental processes

    Bioassay studies support the potential for latrogenic transmission of variant Creutzfeldt Jakob disease through dental procedures

    Get PDF
    Background: Evidence is required to quantify the potential risks of transmission of variant Creutzfeldt Jakob (vCJD) through dental procedures. Studies, using animal models relevant to vCJD, were performed to address two questions. Firstly, whether oral tissues could become infectious following dietary exposure to BSE? Secondly, would a vCJD-contaminated dental instrument be able to transmit disease to another patient? Methods: BSE-301V was used as a clinically relevant model for vCJD. VM-mice were challenged by injection of infected brain homogenate into the small intestine (Q1) or by five minute contact between a deliberately-contaminated dental file and the gingival margin (Q2). Ten tissues were collected from groups of challenged mice at three or four weekly intervals, respectively. Each tissue was pooled, homogenised and bioassayed in indicator mice. Findings: Challenge via the small intestine gave a transmission rate of 100% (mean incubation 157±17 days). Infectivity was found in both dental pulp and the gingival margin within 3 weeks of challenge and was observed in all tissues tested within the oral cavity before the appearance of clinical symptoms. Following exposure to deliberately contaminated dental files, 97% of mice developed clinical disease (mean incubation 234±33 days). Interpretation: Infectivity was higher than expected, in a wider range of oral tissues, than was allowed for in previous risk assessments. Disease was transmitted following transient exposure of the gingiva to a contaminated dental file. These observations provide evidence that dental procedures could be a route of cross-infection for vCJD and support the enforcement of single-use for certain dental instruments

    Molecular pathology of human prion disease

    Get PDF
    Human prion diseases are associated with a range of clinical presentations and are classified by both clinicopathological syndrome and aetiology with sub-classification according to molecular criteria. Considerable experimental evidence suggests that phenotypic diversity in human prion disease relates in significant part to the existence of distinct human prion strains encoded by abnormal PrP isoforms with differing physicochemical properties. To date, however, the conformational repertoire of pathological isoforms of wild-type human PrP and the various forms of mutant human PrP has not been fully defined. Efforts to produce a unified international classification of human prion disease are still ongoing. The ability of genetic background to influence prion strain selection together with knowledge of numerous other factors that may influence clinical and neuropathological presentation strongly emphasises the requirement to identify distinct human prion strains in appropriate transgenic models, where host genetic variability and other modifiers of phenotype are removed. Defining how many human prion strains exist allied with transgenic modelling of potentially zoonotic prion strains will inform on how many human infections may have an animal origin. Understanding these relationships will have direct translation to protecting public health

    Temperature differences are associated with malignancy on lung lesions: a clinical study

    Get PDF
    BACKGROUND: Although new endoscopic techniques can enhance the ability to detect a suspicious lung lesion, the primary diagnosis still depends on subjective visual assessment. We evaluated whether thermal heterogeneity of solid tumors, in bronchial epithelium, constitutes an additional marker for the diagnosis of benign and malignant lesions. METHODS: A new method, developed in our institute, is introduced in order to detect temperature in human pulmonary epithelium, in vivo. This method is based on a thermography catheter, which passes the biopsy channel of the fiber optic bronchoscope. We calculated the temperature differences (ΔT) between the lesion and a normal bronchial epithelium area on 22 lesions of 20 subjects, 50 – 65 years old. RESULTS: Eleven lesions were benign and 11 were malignant, according to the biopsy histology followed the thermography procedure. We found significant differences of ÄT between patients with benign and malignant tumor (0.71 ± 0.6 vs. 1.23 ± 0.4°C, p < 0.05). Logistic regression analysis showed that 1-Celsius degree differences between normal tissue and suspicious lesion six-fold the probability of malignancy (odds ratio = 6.18, 95% CI 0.89 – 42.7). Also, ΔT values greater than 1.05°C, constitutes a crucial point for the discrimination of malignancy, in bronchial epithelium, with sensitivity (64%) and specificity (91%). CONCLUSION: These findings suggest that the calculated ΔT between normal tissue and a neoplastic area could be a useful criterion for the diagnosis of malignancy in tumors of lung lesions

    A mathematical and computational review of Hartree-Fock SCF methods in Quantum Chemistry

    Get PDF
    We present here a review of the fundamental topics of Hartree-Fock theory in Quantum Chemistry. From the molecular Hamiltonian, using and discussing the Born-Oppenheimer approximation, we arrive to the Hartree and Hartree-Fock equations for the electronic problem. Special emphasis is placed in the most relevant mathematical aspects of the theoretical derivation of the final equations, as well as in the results regarding the existence and uniqueness of their solutions. All Hartree-Fock versions with different spin restrictions are systematically extracted from the general case, thus providing a unifying framework. Then, the discretization of the one-electron orbitals space is reviewed and the Roothaan-Hall formalism introduced. This leads to a exposition of the basic underlying concepts related to the construction and selection of Gaussian basis sets, focusing in algorithmic efficiency issues. Finally, we close the review with a section in which the most relevant modern developments (specially those related to the design of linear-scaling methods) are commented and linked to the issues discussed. The whole work is intentionally introductory and rather self-contained, so that it may be useful for non experts that aim to use quantum chemical methods in interdisciplinary applications. Moreover, much material that is found scattered in the literature has been put together here to facilitate comprehension and to serve as a handy reference.Comment: 64 pages, 3 figures, tMPH2e.cls style file, doublesp, mathbbol and subeqn package

    Non-lethal control of the cariogenic potential of an agent-based model for dental plaque

    Get PDF
    Dental caries or tooth decay is a prevalent global disease whose causative agent is the oral biofilm known as plaque. According to the ecological plaque hypothesis, this biofilm becomes pathogenic when external challenges drive it towards a state with a high proportion of acid-producing bacteria. Determining which factors control biofilm composition is therefore desirable when developing novel clinical treatments to combat caries, but is also challenging due to the system complexity and the existence of multiple bacterial species performing similar functions. Here we employ agent-based mathematical modelling to simulate a biofilm consisting of two competing, distinct types of bacterial populations, each parameterised by their nutrient uptake and aciduricity, periodically subjected to an acid challenge resulting from the metabolism of dietary carbohydrates. It was found that one population was progressively eliminated from the system to give either a benign or a pathogenic biofilm, with a tipping point between these two fates depending on a multiplicity of factors relating to microbial physiology and biofilm geometry. Parameter sensitivity was quantified by individually varying the model parameters against putative experimental measures, suggesting non-lethal interventions that can favourably modulate biofilm composition. We discuss how the same parameter sensitivity data can be used to guide the design of validation experiments, and argue for the benefits of in silico modelling in providing an additional predictive capability upstream from in vitro experiments
    corecore