84 research outputs found
Early maternal deprivation affects dentate gyrus structure and emotional learning in adult female rats
Rationale: Stress elicits functional and structural changes in the hippocampus. Early life stress is one of the major risk factors for stress-related pathologies like depression. Patients suffering from depression show a reduced hippocampal volume, and in women, this occurs more often when depression is preceded by childhood trauma. However, the underlying mechanisms that account for a reduced hippocampal volume are unknown. Objective: We examined the effects of maternal absence on structure and function of the hippocampus in female offspring. Methods: We studied whether 24 h of maternal deprivation (MD) on postnatal day 3 altered adult neurogenesis, individual neuronal morphology and dentate gyrus (DG) structure in young adult female rats. In addition, functional alterations were addressed by studying synaptic plasticity in vitro, and spatial as well as emotional learning was tested. Results: Adult females that were subjected to MD revealed significant reductions in DG granule cell number and density. In addition, DG neurons were altered in their dendritic arrangement. No effects on the rate of adult neurogenesis were found. Furthermore, MD did not alter synaptic plasticity in vitro, neither under normal nor high-stress conditions. In addition, spatial learning and contextual fear conditioning were comparable between control and MD animals. However, MD animals showed an improved amygdala-dependent fear memory. Conclusion: Although early life stress exposure did not impair hippocampus-dependent functioning in female offspring, it irreversibly affected DG structure by reducing cell numbers. This may be relevant for the reduced hippocampal volume observed in depression and the increased vulnerability of women to develop depression
The elegans of spindle assembly
The Caenorhabditis elegans one-cell embryo is a powerful system in which to study microtubule organization because this large cell assembles both meiotic and mitotic spindles within the same cytoplasm over the course of 1Â h in a stereotypical manner. The fertilized oocyte assembles two consecutive acentrosomal meiotic spindles that function to reduce the replicated maternal diploid set of chromosomes to a single-copy haploid set. The resulting maternal DNA then unites with the paternal DNA to form a zygotic diploid complement, around which a centrosome-based mitotic spindle forms. The early C. elegans embryo is amenable to live-cell imaging and electron tomography, permitting a detailed structural comparison of the meiotic and mitotic modes of spindle assembly
Outer membrane protein folding from an energy landscape perspective
The cell envelope is essential for the survival of Gram-negative bacteria. This specialised membrane is densely packed with outer membrane proteins (OMPs), which perform a variety of functions. How OMPs fold into this crowded environment remains an open question. Here, we review current knowledge about OFMP folding mechanisms in vitro and discuss how the need to fold to a stable native state has shaped their folding energy landscapes. We also highlight the role of chaperones and the ÎČ-barrel assembly machinery (BAM) in assisting OMP folding in vivo and discuss proposed mechanisms by which this fascinating machinery may catalyse OMP folding
The cellular geography of Aurora kinases
Aurora is the name given to a family of highly conserved protein kinases with essential roles in
many aspects of cell division. Yeasts have a single Aurora kinase, whereas mammals have three:
Aurora A, B and C. During mitosis, Aurora kinases regulate the structure and function of the cytoskeleton and chromosomes and the interactions between these two at the kinetochore.
They also regulate signalling by the spindle-assembly checkpoint pathway and cytokinesis.
Perturbation of Aurora kinase expression or function might lead to cancer
Revised diagnosis and severity criteria for sinusoidal obstruction syndrome/veno-occlusive disease in adult patients : a new classification from the European Society for Blood and Marrow Transplantation
Sinusoidal obstruction syndrome, also known as veno-occlusive disease (SOS/VOD), is a potentially life threatening complication that can develop after hematopoietic cell transplantation. Although SOS/VOD progressively resolves within a few weeks in most patients, the most severe forms result in multi-organ dysfunction and are associated with a high mortality rate (480%). Therefore, careful attention must be paid to allow an early detection of SOS/VOD, particularly as drugs have now proven to be effective and licensed for its treatment. Unfortunately, current criteria lack sensitivity and specificity, making early identification and severity assessment of SOS/VOD difficult. The aim of this work is to propose a new definition for diagnosis, and a severity-grading system for SOS/VOD in adult patients, on behalf of the European Society for Blood and Marrow Transplantation.Peer reviewe
- âŠ