76 research outputs found

    Sex Promotes Spatial and Dietary Segregation in a Migratory Shorebird during the Non-Breeding Season

    Get PDF
    Several expressions of sexual segregation have been described in animals, especially in those exhibiting conspicuous dimorphism. Outside the breeding season, segregation has been mostly attributed to size or age-mediated dominance or to trophic niche divergence. Regardless of the recognized implications for population dynamics, the ecological causes and consequences of sexual segregation are still poorly understood. We investigate the foraging habits of a shorebird showing reversed sexual dimorphism, the black-tailed godwit Limosa limosa, during the winter season, and found extensive segregation between sexes in spatial distribution, microhabitat use and dietary composition. Males and females exhibited high site-fidelity but differed in their distributions at estuary-scale. Male godwits (shorter-billed) foraged more frequently in exposed mudflats than in patches with higher water levels, and consumed more bivalves and gastropods and fewer polychaetes than females. Females tended to be more frequently involved and to win more aggressive interactions than males. However, the number of aggressions recorded was low, suggesting that sexual dominance plays a lesser role in segregation, although its importance cannot be ruled out. Dimorphism in the feeding apparatus has been used to explain sex differences in foraging ecology and behaviour of many avian species, but few studies confirmed that morphologic characteristics drive individual differences within each sex. We found a relationship between resource use and bill size when pooling data from males and females. However, this relationship did not hold for either sex separately, suggesting that differences in foraging habits of godwits are primarily a function of sex, rather than bill size. Hence, the exact mechanisms through which this segregation operates are still unknown. The recorded differences in spatial distribution and resource use might expose male and female to distinct threats, thus affecting population dynamics through differential mortality. Therefore, population models and effective conservation strategies should increasingly take sex-specific requirements into consideration

    Ecological impacts of non-native Pacific oysters (Crassostrea gigas) and management measures for protected areas in Europe

    Get PDF
    Pacific oysters are now one of the most ‘globalised’ marine invertebrates. They dominate bivalve aquaculture production in many regions and wild populations are increasingly becoming established, with potential to displace native species and modify habitats and ecosystems. While some fishing communities may benefit from wild populations, there is now a tension between the continued production of Pacific oysters and risk to biodiversity, which is of particular concern within protected sites. The issue of the Pacific oyster therefore locates at the intersection between two policy areas: one concerning the conservation of protected habitats, the other relating to livelihoods and the socio-economics of coastal aquaculture and fishing communities. To help provide an informed basis for management decisions, we first summarise evidence for ecological impacts of wild Pacific oysters in representative coastal habitats. At local scales, it is clear that establishment of Pacific oysters can significantly alter diversity, community structure and ecosystem processes, with effects varying among habitats and locations and with the density of oysters. Less evidence is available to evaluate regional-scale impacts. A range of management measures have been applied to mitigate negative impacts of wild Pacific oysters and we develop recommendations which are consistent with the scientific evidence and believe compatible with multiple interests. We conclude that all stakeholders must engage in regional decision making to help minimise negative environmental impacts, and promote sustainable industry development

    Predation risk and foraging behavior of the hoary marmot in Alaska

    Full text link
    I observed hoary marmots for three field seasons to determine how the distribution of food and the risk of predation influenced marmots' foraging behavior. I quantified the amount of time Marmota caligata foraged in different patches of alpine meadows and assessed the distribution and abundance of vegetation eaten by marmots in these meadows. Because marmots dig burrows and run to them when attacked by predators, marmot-toburrow distance provided an index of predation risk that could be specified for different meadow patches.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/46873/1/265_2004_Article_BF00292992.pd

    Pacing and Decision Making in Sport and Exercise: The Roles of Perception and Action in the Regulation of Exercise Intensity

    Get PDF
    In pursuit of optimal performance, athletes and physical exercisers alike have to make decisions about how and when to invest their energy. The process of pacing has been associated with the goal-directed regulation of exercise intensity across an exercise bout. The current review explores divergent views on understanding underlying mechanisms of decision making in pacing. Current pacing literature provides a wide range of aspects that might be involved in the determination of an athlete's pacing strategy, but lacks in explaining how perception and action are coupled in establishing behaviour. In contrast, decision-making literature rooted in the understanding that perception and action are coupled provides refreshing perspectives on explaining the mechanisms that underlie natural interactive behaviour. Contrary to the assumption of behaviour that is managed by a higher-order governor that passively constructs internal representations of the world, an ecological approach is considered. According to this approach, knowledge is rooted in the direct experience of meaningful environmental objects and events in individual environmental processes. To assist a neuropsychological explanation of decision making in exercise regulation, the relevance of the affordance competition hypothesis is explored. By considering pacing as a behavioural expression of continuous decision making, new insights on underlying mechanisms in pacing and optimal performance can be developed. © 2014 Springer International Publishing Switzerland

    Seasonal variations in the diet and foraging behaviour of dunlins Calidris alpina in a South European estuary: improved feeding conditions for northward migrants

    Get PDF
    During the annual cycle, migratory waders may face strikingly different feeding conditions as they move between breeding areas and wintering grounds. Thus, it is of crucial importance that they rapidly adjust their behaviour and diet to benefit from peaks of prey abundance, in particular during migration, when they need to accumulate energy at a fast pace. In this study, we compared foraging behaviour and diet of wintering and northward migrating dunlins in the Tagus estuary, Portugal, by video-recording foraging birds and analysing their droppings. We also estimated energy intake rates and analysed variations in prey availability, including those that were active at the sediment surface. Wintering and northward migrating dunlins showed clearly different foraging behaviour and diet. In winter, birds predominantly adopted a tactile foraging technique (probing), mainly used to search for small buried bivalves, with some visual surface pecking to collect gastropods and crop bivalve siphons. Contrastingly, in spring dunlins generally used a visual foraging strategy, mostly to consume worms, but also bivalve siphons and shrimps. From winter to spring, we found a marked increase both in the biomass of invertebrate prey in the sediment and in the surface activity of worms and siphons. The combination of these two factors, together with the availability of shrimps in spring, most likely explains the changes in the diet and foraging behaviour of dunlins. Northward migrating birds took advantage from the improved feeding conditions in spring, achieving 65% higher energy intake rates as compared with wintering birds. Building on these results and on known daily activity budgets for this species, our results suggest that Tagus estuary provides high-quality feeding conditions for birds during their stopovers, enabling high fattening rates. These findings show that this large wetland plays a key role as a stopover site for migratory waders within the East Atlantic Flyway.This study was supported by Fundação para a CiĂȘncia e a Tecnologia (http://alfa.fct.mctes.pt/) through Project PTDC/MAR/119920/2010 and grants to RCM (SFRH/BD/44871/2008), TC (SFRH/BPD/46967/2008) and CDS (SFRH/BPD/64786/2009). JPG was under a research contract within project “Sustainable Use of Marine Resources - MARES” (CENTRO-07-ST24-FEDER-002033), co-financed by “Mais Centro” Regional Operational Programme (Centro Region) and European Regional Development Fund (ERDF). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.publishe

    Optimal foraging and fitness in Columbian ground squirrels

    Full text link
    Optimal diets were determined for each of 109 individual Columbian ground squirrels ( Spermophilus columbianus ) at two sites in northwestern Montana. Body mass, daily activity time, and vegetation consumption rates for individuals were measured in the field, along with the average water content of vegetation at each ground squirrel colony. I also measured stomach and caecal capacity and turnover rate of plant food through the digestive tract for individuals in the laboratory to construct regressions of digestive capacity as a function of individual body mass. Finally, I obtained literature estimates of average daily energy requirements as a function of body mass and digestible energy content of vegetation. These data were used to construct a linear programming diet model for each individual. The model for each individual was used to predict the proportion of two food types (monocots and dicots) that maximized daily energy intake, given time and digestive constraints on foraging. Individuals were classified as “optimal” or “deviating”, depending on whether their observed diet was significantly different from their predicted optimal diet. I determined the consequences of selecting an optimal diet for energy intake and fitness. As expected, daily energy intake calculated for deviators (based on their observed diet proportion) was less than that for optimal foragers. Deviating foragers do not appear to compensate for their lower calculated energy intake through other factors such as body size or physiological efficiency of processing food. Growth rate, yearly survivorship, and litter size increase with calculated energy intake, and optimal foragers have six times the reproductive success of deviators by age three. Optimal foraging behavior, therefore, appears to confer a considerable fitness advantage.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/47783/1/442_2004_Article_BF00318534.pd
    • 

    corecore