72 research outputs found
Cooperative coupling of ultracold atoms and surface plasmons
Cooperative coupling between optical emitters and light fields is one of the
outstanding goals in quantum technology. It is both fundamentally interesting
for the extraordinary radiation properties of the participating emitters and
has many potential applications in photonics. While this goal has been achieved
using high-finesse optical cavities, cavity-free approaches that are broadband
and easy to build have attracted much attention recently. Here we demonstrate
cooperative coupling of ultracold atoms with surface plasmons propagating on a
plane gold surface. While the atoms are moving towards the surface they are
excited by an external laser pulse. Excited surface plasmons are detected via
leakage radiation into the substrate of the gold layer. A maximum Purcell
factor of is reached at an optimum distance of
from the surface. The coupling leads to the observation of
a Fano-like resonance in the spectrum.Comment: 9 pages, 4 figure
Metabolic alterations during the growth of tumour spheroids
Solid tumours undergo considerable alterations in their metabolism of nutrients in order to generate sufficient energy and biomass for sustained growth and proliferation. During growth, the tumour microenvironment exerts a number of influences (e.g. hypoxia and acidity) that affect cellular biology and the flux or utilisation of fuels including glucose. The tumour spheroid model was used to characterise the utilisation of glucose and describe alterations to the activity and expression of key glycolytic enzymes during the tissue growth curve. Glucose was avidly consumed and associated with the production of lactate and an acidified medium, confirming the reliance on glycolytic pathways and a diminution of oxidative phosphorylation. The expression levels and activities of hexokinase, phosphofructokinase-1, pyruvate kinase and lactate dehydrogenase in the glycolytic pathway were measured to assess glycolytic capacity. Similar measurements were made for glucose-6-phosphate dehydrogenase, the entry point and regulatory step of the pentose-phosphate pathway (PPP) and for cytosolic malate dehydrogenase, a key link to TCA cycle intermediates. The parameters for these key enzymes were shown to undergo considerable variation during the growth curve of tumour spheroids. In addition, they revealed that the dynamic alterations were influenced by both transcriptional and posttranslational mechanisms
Metabolic alterations during the growth of tumour spheroids
Solid tumours undergo considerable alterations in their metabolism of nutrients in order to generate sufficient energy and biomass for sustained growth and proliferation. During growth, the tumour microenvironment exerts a number of influences (e.g. hypoxia and acidity) that affect cellular biology and the flux or utilisation of fuels including glucose. The tumour spheroid model was used to characterise the utilisation of glucose and describe alterations to the activity and expression of key glycolytic enzymes during the tissue growth curve. Glucose was avidly consumed and associated with the production of lactate and an acidified medium, confirming the reliance on glycolytic pathways and a diminution of oxidative phosphorylation. The expression levels and activities of hexokinase, phosphofructokinase-1, pyruvate kinase and lactate dehydrogenase in the glycolytic pathway were measured to assess glycolytic capacity. Similar measurements were made for glucose-6-phosphate dehydrogenase, the entry point and regulatory step of the pentose-phosphate pathway (PPP) and for cytosolic malate dehydrogenase, a key link to TCA cycle intermediates. The parameters for these key enzymes were shown to undergo considerable variation during the growth curve of tumour spheroids. In addition, they revealed that the dynamic alterations were influenced by both transcriptional and posttranslational mechanisms
Fibrinogen/LDL apheresis is a promising rescue therapy for sudden sensorineural hearing loss
Fibrinogen/LDL apheresis has been proven to be effective in treatment of sudden sensorineural hearing loss (SSNH). This study is aimed to investigate if reduction of fibrinogen and serum LDL is also effective in patients with SSNH non-responding toward treatment with corticosteroids and plasmaexpanders.Remission rates of 217 patients suffering from SSHL were investigated after treatment with apheresis. All patients were non-responders after other therapies such as high doses of steroids or plasmaexpanders.Single apheresis resulted in complete or partial remissions in 61% of patients when given after other unsuccessful conducted therapies such as corticosteroids and plasmaexpanders.Fibrinogen/LDL apheresis is a promising rescue therapy for sudden sensorineural hearing loss even after unsuccessful other therapies
Targeting the Lactate Transporter MCT1 in Endothelial Cells Inhibits Lactate-Induced HIF-1 Activation and Tumor Angiogenesis
Switching to a glycolytic metabolism is a rapid adaptation of tumor cells to hypoxia. Although this metabolic conversion may primarily represent a rescue pathway to meet the bioenergetic and biosynthetic demands of proliferating tumor cells, it also creates a gradient of lactate that mirrors the gradient of oxygen in tumors. More than a metabolic waste, the lactate anion is known to participate to cancer aggressiveness, in part through activation of the hypoxia-inducible factor-1 (HIF-1) pathway in tumor cells. Whether lactate may also directly favor HIF-1 activation in endothelial cells (ECs) thereby offering a new druggable option to block angiogenesis is however an unanswered question. In this study, we therefore focused on the role in ECs of monocarboxylate transporter 1 (MCT1) that we previously identified to be the main facilitator of lactate uptake in cancer cells. We found that blockade of lactate influx into ECs led to inhibition of HIF-1-dependent angiogenesis. Our demonstration is based on the unprecedented characterization of lactate-induced HIF-1 activation in normoxic ECs and the consecutive increase in vascular endothelial growth factor receptor 2 (VEGFR2) and basic fibroblast growth factor (bFGF) expression. Furthermore, using a variety of functional assays including endothelial cell migration and tubulogenesis together with in vivo imaging of tumor angiogenesis through intravital microscopy and immunohistochemistry, we documented that MCT1 blockers could act as bona fide HIF-1 inhibitors leading to anti-angiogenic effects. Together with the previous demonstration of MCT1 being a key regulator of lactate exchange between tumor cells, the current study identifies MCT1 inhibition as a therapeutic modality combining antimetabolic and anti-angiogenic activities
Protein Expression in the Nucleus Accumbens of Rats Exposed to Developmental Vitamin D Deficiency
Introduction: Developmental vitamin D (DVD) deficiency is a candidate risk factor for schizophrenia. Animal models have confirmed that DVD deficiency is associated with a range of altered genomic, proteomic, structural and behavioural outcomes in the rat. Because the nucleus accumbens has been implicated in neuropsychiatric disorders, in the current study we examined protein expression in this region in adult rats exposed to DVD deficienc
Ten new insights in climate science 2024
The years 2023 and 2024 were characterized by unprecedented warming across the globe, underscoring the urgency of climate action. Robust science advice for decision makers on subjects as complex as climate change requires deep cross- and interdisciplinary understanding. However, navigating the ever-expanding and diverse peer-reviewed literature on climate change is enormously challenging for individual researchers. We elicited expert input through an online questionnaire (188 respondents from 45 countries) and prioritized 10 key advances in climate-change research with high policy relevance. The insights span a wide range of areas, from changes in methane and aerosol emissions to the factors shaping citizens’ acceptance of climate policies. This synthesis and communications effort forms the basis for a science-policy report distributed to party delegations ahead of the 29th session of the Conference of the Parties (COP29) to inform their positions and arguments on critical issues, including heat-adaptation planning, comprehensive mitigation strategies, and strengthened governance in energy-transition minerals value chains
Effects of formaldehyde on the frog's mucociliary epithelium as a surrogate to evaluate air pollution effects on the respiratory epithelium
An overview of tissue engineering approaches for management of spinal cord injuries
Severe spinal cord injury (SCI) leads to devastating neurological deficits and disabilities, which necessitates spending a great deal of health budget for psychological and healthcare problems of these patients and their relatives. This justifies the cost of research into the new modalities for treatment of spinal cord injuries, even in developing countries. Apart from surgical management and nerve grafting, several other approaches have been adopted for management of this condition including pharmacologic and gene therapy, cell therapy, and use of different cell-free or cell-seeded bioscaffolds. In current paper, the recent developments for therapeutic delivery of stem and non-stem cells to the site of injury, and application of cell-free and cell-seeded natural and synthetic scaffolds have been reviewed
Is exposure to formaldehyde in air causally associated with leukemia?—A hypothesis-based weight-of-evidence analysis
Recent scientific debate has focused on the potential for inhaled formaldehyde to cause lymphohematopoietic cancers, particularly leukemias, in humans. The concern stems from certain epidemiology studies reporting an association, although particulars of endpoints and dosimetry are inconsistent across studies and several other studies show no such effects. Animal studies generally report neither hematotoxicity nor leukemia associated with formaldehyde inhalation, and hematotoxicity studies in humans are inconsistent. Formaldehyde's reactivity has been thought to preclude systemic exposure following inhalation, and its apparent inability to reach and affect the target tissues attacked by known leukemogens has, heretofore, led to skepticism regarding its potential to cause human lymphohematopoietic cancers. Recently, however, potential modes of action for formaldehyde leukemogenesis have been hypothesized, and it has been suggested that formaldehyde be identified as a known human leukemogen. In this article, we apply our hypothesis-based weight-of-evidence (HBWoE) approach to evaluate the large body of evidence regarding formaldehyde and leukemogenesis, attending to how human, animal, and mode-of-action results inform one another. We trace the logic of inference within and across all studies, and articulate how one could account for the suite of available observations under the various proposed hypotheses. Upon comparison of alternative proposals regarding what causal processes may have led to the array of observations as we see them, we conclude that the case fora causal association is weak and strains biological plausibility. Instead, apparent association between formaldehyde inhalation and leukemia in some human studies is better interpreted as due to chance or confounding
- …
