71 research outputs found

    Development and validation study of a non-alcoholic fatty liver disease risk scoring model among adults in China

    Get PDF
    Background: Non-alcoholic fatty liver disease (NAFLD) is one of the most common liver diseases in China. It is usually asymptomatic and transabdominal ultrasound (USS) is the usual means for diagnosis, but it may not be feasible to have USS screening of the whole population. Objective: To develop a risk scoring model for predicting the presence of NAFLD using parameters that can be easily obtain in clinical settings. Methods: A retrospective study on the data of 672 adults who had general health check including a transabdominal ultrasound. Fractional polynomial and multivariable logistic regressions of sociodemographic and biochemical variables on NAFLD were used to identify the predictors. A risk score was assigned to each predictor using the scaled standardized β-coefficient to create a risk prediction algorithm. The accuracy for NAFLD detection by each cut-off score in the risk algorithm was evaluated. Results: The prevalence of NAFLD in our study population was 33.0% (222/672). Six significant factors were selected in the final prediction model. The areas under the curve (AUC) was 0.82 (95% CI: 0.78–0.85). The optimal cut-off score, based on the ROC was 35, with a sensitivity of 76.58% (95% CI: 70.44–81.98%) and specificity of 74.89% (95% CI: 70.62–78.83%). Conclusion: A NAFLD risk scoring model can be used to identify asymptomatic Chinese people who are at risk of NAFLD for further USS investigation.published_or_final_versio

    Association of ICAM3 genetic variant with severe acute respiratory syndrome

    Get PDF
    Genetic polymorphisms have been demonstrated to be associated with vulnerability to human infection. ICAM3, an intercellular adhesion molecule important for T cell activation, and FCER2 (CD23), an immune response gene, both located on chromosome 19p13.3, were investigated for host genetic susceptibility and association with clinical outcome. A case-control study based on 817 patients with confirmed severe acute respiratory syndrome (SARS), 307 health care worker control subjects, 290 outpatient control subjects, and 309 household control subjects unaffected by SARS from Hong Kong was conducted to test for genetic association. No significant association to susceptibility to SARS infection caused by the novel coronavirus (SARS-CoV) was found for the FCER2 and the ICAM3 single nucleotide polymorphisms. However, patients with SARS homozygous for ICAM3 Gly143 showed significant association with higher lactate dehydrogenase levels (P = .0067; odds ratio [OR], 4.31 [95% confidence interval {CI}, 1.37-13.56]) and lower total white blood cell counts (P = .022; OR, 0.30 [95% CI, 0.10-0.89]) on admission. These findings support the role of ICAM3 in the immunopathogenesis of SARS. © 2007 by the Infectious Diseases Society of America. All rights reserved.published_or_final_versio

    Differential regulation of myeloid leukemias by the bone marrow microenvironment

    Get PDF
    Like their normal hematopoietic stem cell counterparts, leukemia stem cells (LSC) in chronic myelogenous leukemia (CML) and acute myeloid leukemia (AML) are presumed to reside in specific niches in the bone marrow microenvironment (BMM)1, and may be the cause of relapse following chemotherapy.2 Targeting the niche is a novel strategy to eliminate persistent and drug-resistant LSC. CD443,4 and IL-65 have been implicated previously in the LSC niche. Transforming growth factor (TGF)-β1 is released during bone remodeling6 and plays a role in maintenance of CML LSCs7, but a role for TGF-β1 from the BMM has not been defined. Here, we show that alteration of the BMM by osteoblastic cell-specific activation of the parathyroid hormone (PTH) receptor8,9 attenuates BCR-ABL1-induced CML-like myeloproliferative neoplasia (MPN)10 but enhances MLL-AF9-induced AML11 in mouse transplantation models, possibly through opposing effects of increased TGF-β1 on the respective LSC. PTH treatment caused a 15-fold decrease in LSCs in wildtype mice with CML-like MPN, and reduced engraftment of immune deficient mice with primary human CML cells. These results demonstrate that LSC niches in chronic and acute myeloid leukemias are distinct, and suggest that modulation of the BMM by PTH may be a feasible strategy to reduce LSC, a prerequisite for the cure of CML

    Circumstellar disks and planets. Science cases for next-generation optical/infrared long-baseline interferometers

    Full text link
    We present a review of the interplay between the evolution of circumstellar disks and the formation of planets, both from the perspective of theoretical models and dedicated observations. Based on this, we identify and discuss fundamental questions concerning the formation and evolution of circumstellar disks and planets which can be addressed in the near future with optical and infrared long-baseline interferometers. Furthermore, the importance of complementary observations with long-baseline (sub)millimeter interferometers and high-sensitivity infrared observatories is outlined.Comment: 83 pages; Accepted for publication in "Astronomy and Astrophysics Review"; The final publication is available at http://www.springerlink.co

    Magnetic crystals and helical liquids in alkaline-earth fermionic gases

    Get PDF
    The joint action of a synthetic gauge potential and of atomic contact repulsion in a one-dimensional alkaline-earth(-like) fermionic gas with nuclear spin I leads to the existence of a hierarchy of fractional insulating and conducting states with intriguing properties. We unveil the existence and the features of those phases by means of both analytical bosonization techniques and numerical methods based on the density-matrix renormalization group algorithm. In particular, we show that the gapless phases can support helical modes, whereas the gapped states, which appear under certain conditions, are characterised both by density and magnetic order. Several distinct features emerge solely for spin I larger than 1/2, thus making their study with cold-atoms unique. We will finally argue that these states are related to the properties of an unconventional fractional quantum Hall effect in the thin-torus limit. The properties of this hierarchy of states can be experimentally studied in state-of-the-art cold-atom laboratories

    Matrix Metalloproteinase-10 Is Required for Lung Cancer Stem Cell Maintenance, Tumor Initiation and Metastatic Potential

    Get PDF
    Matrix metalloproteinases (Mmps) stimulate tumor invasion and metastasis by degrading the extracellular matrix. Here we reveal an unexpected role for Mmp10 (stromelysin 2) in the maintenance and tumorigenicity of mouse lung cancer stem-like cells (CSC). Mmp10 is highly expressed in oncosphere cultures enriched in CSCs and RNAi-mediated knockdown of Mmp10 leads to a loss of stem cell marker gene expression and inhibition of oncosphere growth, clonal expansion, and transformed growth in vitro. Interestingly, clonal expansion of Mmp10 deficient oncospheres can be restored by addition of exogenous Mmp10 protein to the culture medium, demonstrating a direct role for Mmp10 in the proliferation of these cells. Oncospheres exhibit enhanced tumor-initiating and metastatic activity when injected orthotopically into syngeneic mice, whereas Mmp10-deficient cultures show a severe defect in tumor initiation. Conversely, oncospheres implanted into syngeneic non-transgenic or Mmp10−/− mice show no significant difference in tumor initiation, growth or metastasis, demonstrating the importance of Mmp10 produced by cancer cells rather than the tumor microenvironment in lung tumor initiation and maintenance. Analysis of gene expression data from human cancers reveals a strong positive correlation between tumor Mmp10 expression and metastatic behavior in many human tumor types. Thus, Mmp10 is required for maintenance of a highly tumorigenic, cancer-initiating, metastatic stem-like cell population in lung cancer. Our data demonstrate for the first time that Mmp10 is a critical lung cancer stem cell gene and novel therapeutic target for lung cancer stem cells

    Reversal of childhood idiopathic scoliosis in an adult, without surgery: a case report and literature review

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Some patients with mild or moderate thoracic scoliosis (Cobb angle <50-60 degrees) suffer disproportionate impairment of pulmonary function associated with deformities in the sagittal plane and reduced flexibility of the spine and chest cage. Long-term improvement in the clinical signs and symptoms of childhood onset scoliosis in an adult, without surgical intervention, has not been documented previously.</p> <p>Case presentation</p> <p>A diagnosis of thoracic scoliosis (Cobb angle 45 degrees) with pectus excavatum and thoracic hypokyphosis in a female patient (DOB 9/17/52) was made in June 1964. Immediate spinal fusion was strongly recommended, but the patient elected a daily home exercise program taught during a 6-week period of training by a physical therapist. This regime was carried out through 1992, with daily aerobic exercise added in 1974. The Cobb angle of the primary thoracic curvature remained unchanged. Ongoing clinical symptoms included dyspnea at rest and recurrent respiratory infections. A period of multimodal treatment with clinical monitoring and treatment by an osteopathic physician was initiated when the patient was 40 years old. This included deep tissue massage (1992-1996); outpatient psychological therapy (1992-1993); a daily home exercise program focused on mobilization of the chest wall (1992-2005); and manipulative medicine (1994-1995, 1999-2000). Progressive improvement in chest wall excursion, increased thoracic kyphosis, and resolution of long-standing respiratory symptoms occurred concomitant with a >10 degree decrease in Cobb angle magnitude of the primary thoracic curvature.</p> <p>Conclusion</p> <p>This report documents improved chest wall function and resolution of respiratory symptoms in response to nonsurgical approaches in an adult female, diagnosed at age eleven years with idiopathic scoliosis.</p

    Pathogenesis of adolescent idiopathic scoliosis in girls - a double neuro-osseous theory involving disharmony between two nervous systems, somatic and autonomic expressed in the spine and trunk: possible dependency on sympathetic nervous system and hormones with implications for medical therapy

    Get PDF
    Anthropometric data from three groups of adolescent girls - preoperative adolescent idiopathic scoliosis (AIS), screened for scoliosis and normals were analysed by comparing skeletal data between higher and lower body mass index subsets. Unexpected findings for each of skeletal maturation, asymmetries and overgrowth are not explained by prevailing theories of AIS pathogenesis. A speculative pathogenetic theory for girls is formulated after surveying evidence including: (1) the thoracospinal concept for right thoracic AIS in girls; (2) the new neuroskeletal biology relating the sympathetic nervous system to bone formation/resorption and bone growth; (3) white adipose tissue storing triglycerides and the adiposity hormone leptin which functions as satiety hormone and sentinel of energy balance to the hypothalamus for long-term adiposity; and (4) central leptin resistance in obesity and possibly in healthy females. The new theory states that AIS in girls results from developmental disharmony expressed in spine and trunk between autonomic and somatic nervous systems. The autonomic component of this double neuro-osseous theory for AIS pathogenesis in girls involves selectively increased sensitivity of the hypothalamus to circulating leptin (genetically-determined up-regulation possibly involving inhibitory or sensitizing intracellular molecules, such as SOC3, PTP-1B and SH2B1 respectively), with asymmetry as an adverse response (hormesis); this asymmetry is routed bilaterally via the sympathetic nervous system to the growing axial skeleton where it may initiate the scoliosis deformity (leptin-hypothalamic-sympathetic nervous system concept = LHS concept). In some younger preoperative AIS girls, the hypothalamic up-regulation to circulating leptin also involves the somatotropic (growth hormone/IGF) axis which exaggerates the sympathetically-induced asymmetric skeletal effects and contributes to curve progression, a concept with therapeutic implications. In the somatic nervous system, dysfunction of a postural mechanism involving the CNS body schema fails to control, or may induce, the spinal deformity of AIS in girls (escalator concept). Biomechanical factors affecting ribs and/or vertebrae and spinal cord during growth may localize AIS to the thoracic spine and contribute to sagittal spinal shape alterations. The developmental disharmony in spine and trunk is compounded by any osteopenia, biomechanical spinal growth modulation, disc degeneration and platelet calmodulin dysfunction. Methods for testing the theory are outlined. Implications are discussed for neuroendocrine dysfunctions, osteopontin, sympathoactivation, medical therapy, Rett and Prader-Willi syndromes, infantile idiopathic scoliosis, and human evolution. AIS pathogenesis in girls is predicated on two putative normal mechanisms involved in trunk growth, each acquired in evolution and unique to humans

    The intelligent automated pressure-adjustable orthosis for patients with adolescent idiopathic scoliosis : a bi-center randomized controlled trial

    No full text
    Title on author’s file: The intelligent automated pressure-adjustable orthosis for patients with adolescent Idiopathic Scoliosis (AIS) : a bi-center randomized controlled trial202205 bcfcAccepted ManuscriptSelf-fundedPublishe
    corecore