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Magnetic crystals and helical liquids
in alkaline-earth fermionic gases
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The joint action of a magnetic field and of interactions is crucial for the appearance of exotic

quantum phenomena, such as the quantum Hall effect. Owing to their rich nuclear structure,

equivalent to an additional synthetic dimension, one-dimensional alkaline-earth(-like)

fermionic gases with synthetic gauge potential and atomic contact repulsion may display

similar related properties. Here we show the existence and the features of a hierarchy of

fractional insulating and conducting states by means of analytical and numerical methods.

We demonstrate that the gapped states are characterized by density and magnetic order

emerging solely for gases with effective nuclear spin I larger than 1/2, whereas the gapless

phases can support helical modes. We finally argue that these states are related to an

unconventional fractional quantum Hall effect in the thin-torus limit and that their properties

can be studied in state-of-the-art laboratories.
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T
he simultaneous presence of particle–particle interactions
and of (non-)Abelian gauge potentials, such as magnetic
fields or spin–orbit coupling (SOC), is responsible for

several spectacular phenomena, the fractional quantum Hall
effect (QHE) being only the most known example. Since several
years this interplay is under close scrutiny both because of its
perspective role in the realization of robust quantum information
protocols and because of the general interest in topological states
of matter1. In the presence of SOC2,3, interactions can further
drive the system into fractional quantum spin Hall states4–6

where edge currents are spin polarized, or other exotic phases,
characterized, for example, by unusual spin textures7–10 or
fractional conducting modes11.

Up to now, the attention has almost entirely focused on
spin-1/2 (electronic) liquids, as most appropriate for the
description of condensed matter systems. However, the recent
progresses in the manipulation and control of cold atomic
gases have brought to high relevance the study of systems of
interacting fermions with a large (and tunable) spin12,13.
The investigation of alkaline-earth(-like) atoms such as
Ytterbium14–17 or Strontium18,19, which are characterized by a
nuclear spin I larger than 1/2, is opening the path to the
exploration of phenomena linked to the properties of SU(N )
models20,21 which are not accessible with solid-state systems. The
phase diagram of related multi-component Heisenberg- or
Hubbard-like models has been investigated in several
theoretical works22–25; yet, very little is known (see, however,
ref. 26) concerning the effect of a gauge potential on an
interacting system of particles with a large spin.

Synthetic gauge potentials in cold atomic systems can be
induced in several ways, for example, via properly tailored laser
pulses27 or engineered lattice shaking28,29. The implementation of
these schemes has already led to the realization of light-induced
magnetic fields30, to Rashba SOC31–33, as well as to lattice models
with peculiar band structures34–40 and ladders with synthetic
gauge potentials41. Similar approaches are suitable for application
also to multi-component gases42,43, as shown in two recent
spectacular experiments44,45. This fecund experimental activity,
together with the rich scenario already explored for spin-1/2
systems, motivates the investigation of interacting systems with
large spin coupled to gauge potentials.

Do large-I alkaline-earth(-like) atoms lead to mere extensions
of what is already known for electronic liquids? The answer is no.
These setups allow for the exploration of novel regimes that can
naturally be achieved only for I41/2 or through the versatility of
this new playground. This puts cold-atom experiments in an
excellent position for the investigation of intriguing many-body
effects unattainable in conventional condensed matter setups.

In this article we consider a one-dimensional fermionic gas
with an effective nuclear spin I � 1 = 2 and investigate the joint
effect of interactions and of a synthetic gauge potential, which is
equivalent to a Rashba SOC and an external magnetic field.
Provided that the states with highest and lowest spin are directly
coupled42,43, a full hierarchy of magnetic crystalline states
appears at fractional fillings:

n � pn
kSOð2I þ 1Þ ¼

p
q

; p; q 2 Nþ and co-prime; ð1Þ

where n is the atomic density and kSO is the typical momentum of
the SOC (to be defined in the following). Combining analytical
and numerical methods, we are able to show that these
insulating phases exhibit non-trivial density and spin ordering.
Furthermore, for certain fractions in equation (1) the insulating
states are connected to the gapped states of an unconventional
fractional QHE in the thin-torus limit (TTL)46. The stabilization
of these gapped phases with q41 requires some form of atom–

atom interaction. Whereas some of them can be realized in the
presence of a simple contact repulsion, it is in general true that for
p¼ 1, the higher the q, the lower the density, and thus the longer
the range of the necessary interaction. These phases change
dramatically once the mentioned coupling between the extremal
spin states is switched off. Similarly to the spin-1/2 case11, the
appearance of a fractional helical liquid, namely a gapless phase
with low-energy excitations with a definite relation between spin
and momentum direction, is reported. Our analysis, which
includes also the effect of a trapping potential and of temperature,
confirms that the findings of this work can be observed with state-
of-the-art experimental techniques. Following the reasoning put
forward in refs 42,43, we can conclude that this setup might serve,
especially in the limit of large I, as a quantum simulator of
two-dimensional exotic interacting phases of matter in the
strongly anisotropic limit.

Results
Model. We consider a one-dimensional model that describes an
optical lattice loaded with a gas of fermionic alkaline-earth(-like)
atoms whose ground state is characterized by a large nuclear spin
I; for a sketch, see Fig. 1a. For generality, we consider a subset of
the atomic nuclear states and define an ‘effective spin’ I , with
I � I; this means that we choose a set of 2I þ 1 nuclear states of
the atom, labelled from now on by m, from the larger set of 2Iþ 1
available states16. The Hamiltonian reads20

Ĥ0¼ � t
X

j

XI
m¼ �I

ĉyj;mĉjþ 1;mþH:c:
� �

þĤint; ð2Þ

where ĉðyÞj;m are fermionic operators annihilating (creating) an
atom at site j with nuclear spin m, and t is the hopping amplitude.
Note that there is no inconsistency between the fermionic
statistics and the study of integer I , since the considered states
can be selected at will from a larger half-integer manifold and,
for example, need not to have adjacent nuclear quantum
number16,20. Ĥint describes an SU(2I þ 1) invariant interaction,
which is usually of contact kind, that is, U

P
j

P
mom0 n̂j;mn̂j;m0 ,

with n̂j;m¼ ĉ
y
j;mĉj;m. As new proposals make the engineering of

longer-range interactions in cold gases more practicable47, we
also discuss as an example the effect of a nearest-neighbour
potential, that is, V

P
j n̂jn̂jþ 1, with n̂j¼

P
m n̂j;m.

A Raman coupling endowed with a running phase connects
states that differ for Dm¼±1:

Ĥ1¼
X

j

XI � 1

m¼ �I
OðIÞm e� i2kSOj ĉ

y
j;mĉj;mþ 1þH:c:

� �
; ð3Þ

here OðIÞm ¼OgðIÞm , where O is the Raman-coupling strength and

gðIÞm depends on the setup. Note that the Hamiltonian Ĥ0þĤ1
has been experimentally implemented44.

The unitary transformation Û defined by Û ĉj;mÛy ¼ ei2kSOmjĉj;m

maps the Hamiltonian Ĥ0þĤ1 to a spin-I fermionic model in
the presence of Rashba SOC and of a magnetic field O
with perpendicular quantization axis (see Methods). The
choice to denote the phase factor in equation (3) with kSO

becomes then clear on inspection of the kinetic term:

ÛĤ0Ûy ¼ � 2t
P

k;m cos k� 2mkSOð Þ̂cyk;mĉk;mþĤint.
We also consider an additional coupling between the extremal

nuclear spins m¼ � I , described by a Hamiltonian term

Ĥ2¼
P

jðO0e� i2kSO jĉyj;I ĉj;�I þH:c:Þ. Engineering Ĥ2 is experi-

mentally more demanding than Ĥ1 and requires a scheme where,
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by means of spin-dependent light shifts, the various spin states
can be addressed with different frequencies. In the following we
exploit the fact that, especially for small I , O0 can be tuned to the
same order of magnitude of OðIÞm . It is important to stress that Ĥ1

implements couplings with an open topology in spin space,
namely with two effective boundaries at m¼ � I . The relevant
effect of Ĥ2 is to implement the additional coupling, which turns
such topology into a closed (circular) one. The possibility to
modify (and eventually switch off) Ĥ2 is unique to this cold-atom
implementation.
Ĥ0 is both invariant under SU(2I þ 1) rotations in spin space

and under discrete lattice translations. For gðIÞm not depending on
m, those symmetries are broken by Ĥ1þĤ2 to Z2I þ 1 rotations
around z axis in spin space and to a spin-dependent

discrete translation ŶZĉj;mŶyZ ¼ e� i2mZkSO ĉjþ Z;m, with Z 2 Z and

kSO
�
p 2 Qþ such that ei2ZkSOð2I þ 1Þ ¼ 1.

Analytical results on magnetic crystals for I � 1. As a first step
we present analytical arguments that for the fillings n¼ p = q
given in equation (1) with odd q and for I � 1 the system
described by the Hamiltonian Ĥ0þĤ1þĤ2 is gapped.

Gapped phases appear in the absence of interactions only for
the fillings n¼ p = q in equation (1) with q¼ 1. It is instructive to
briefly discuss this case as it helps understanding the interacting
one. By writing Ĥ0 in momentum–space representation it is
possible to define a Fermi energy and a Fermi momentum kF

relative to the case with O¼ 0 for each spin state m (see Fig. 1b).
On the other hand, Ĥ1þĤ2 couples modes with Dk¼ � 2kSO
and Dm¼ � 1 or Dm¼ � ð2I þ 1Þ: whenever kSO¼ kF, a
fermion can be simultaneously spin flipped and scattered from
one edge of the Fermi sea to the other one. It is a well-known fact
that these processes lead to the opening of a gap at those edges,
namely the involved modes at kj j\kF get an energy increase of
order BO with respect to those at kj jtkF. The implementation
of couplings with a periodic topology in spin space ensures that
any edge of the Fermi sea gets coupled (see Fig. 1b) and develops
a gap. Thus, the whole system develops a full gap. In this case, the
density n is 2I þ 1ð ÞkF=p, so that n¼ 1. Since higher-order
processes generated by Ĥ1 and Ĥ2 can connect spin states with
|Dm|41, a full gap opens whenever kF¼ pkSO, pA[1, 2,y, 2I]:
these phases correspond to n¼ p.

For values of q larger than 1, insulating phases are determined
by the joint action of Ĥ1þĤ2 and Ĥint, representing the
interplay of the gauge potential and interactions. The situation is
a generalization of the previous case. As an example, let us
consider the case p¼ 1 and q¼ 3 depicted in Fig. 1c; the system is
in a low-density situation and kSO¼ 3kF. Thus, Ĥ1þĤ2, which
couples momentum states with Dk¼ 2kSO, cannot induce any
direct coupling between the Fermi edges at ±kF as before.
However, there can still be an indirect coupling in the presence of
interactions because the latter can scatter two particles initially at
the same Fermi edge with momentum kF, to the modes with
momentum states kF (the other Fermi edge) and 3kF (spin is
unchanged). In this case, if 3kF¼ kSO, a new resonance condition
is met and a coupling between Fermi edges develops through
high-order processes mediated by interactions. The effective
coupling is obtained via the transfer of three particles across the
Fermi surface (two transfers are due to interactions and do not
change m, one is induced by the Raman coupling and changes m;
see Fig. 1c). As in the case q¼ 1, the two gapless excitations at the
Fermi edges involved in each of these processes become gapped
excitations, with gap, which is now of order BU2O. The system
develops a full gap because any edge of the Fermi sea gets coupled
and gapped.

The existence of gapped phases for q41 and odd can be put on
a more solid ground using the bosonization technique, which is
the natural analytical tool to take into account interactions in one
dimension. In the next paragraph we present the key ideas that
lead to the emergence of the gapped phases; details are in the
Methods.

By linearizing the non-interacting spectrum of Ĥ0 around
the Fermi energy, we can write ĉmðxÞ¼ eikFxĉþ ;mðxÞ
þ e� ikFxĉ� ;mðxÞ, where ĉþð� Þ;m is the right (left)-moving
operator of the m-th nuclear spin state. Ĥ1 and Ĥint originate 2I
processes of the form

ĉyþ ;mĉ�;m
� �n

ĉyþ ;mĉ�;mþ 1 ĉyþ ;mþ 1ĉ�;mþ 1

� �n

; n 2 Nþ ; ð4Þ

with m¼ �I ; . . . ; I � 1, which are relevant only when
momentum is conserved, that is, at kF¼ kSO/q with q¼ 2nþ 1.
When n¼ 1, the term (4) reproduces the low-energy physics of
the processes discussed before and displayed in Fig. 1c. Ĥ2
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Figure 1 | Alkaline-earth(-like) atomic Fermi gas with effective nuclear

spin I . (a) Sketch of a one-dimensional gas of fermionic atoms with an

effective nuclear spin I ¼ 5 = 2 selected from the larger set of 2Iþ 1 nuclear

spin states. (b) Energy bands of the Hamiltonian Ĥ0 for Ĥint ¼0 and

I ¼ 5 = 2; an energy shift is inserted for representation clarity, but they are

degenerate. In this case it is possible to define a Fermi momentum kF for

each spin state, so that the system has in total 2ð2I þ 1Þ edges. When O is

turned on, fermions with momentum difference Dk¼±2kSO and spin

difference Dm¼ � 1 (solid arrows) or Dm¼ � 2I þ 1 (dashed arrow) get

coupled through Ĥ1 and Ĥ2, respectively: if the condition kSO¼ kF is met,

the system develops a full gap, corresponding to n¼ 1. (c) When Ĥint 6¼ 0,

the system can develop a gap for lower fillings n¼ 1/q via higher-order

scattering terms. As an example, the picture highlights three intermediate

processes that generate a coupling between two Fermi edges with Dm¼ 1

of a I ¼ 5 = 2 gas: their sequence (top to bottom) originates a third-order

process, which couples two Fermi surfaces for q¼ 3 and kF¼ kSO/3.

The same processes take place for any couple of edges with Dm¼ 1.

(d) For I ¼ 1 = 2 the condition kSO¼ kF is not enough because Ĥ2¼0

(upper panel): when kSO¼ p/2 the identification of momenta modulo 2p
allows for the creation of a gap (lower panel).
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generates one more relevant process, expressed in the form of
equation (4) by replacing m with I and mþ 1 with �I .
Hamiltonian Ĥ0 and terms in equation (4) must be treated with
bosonization; the analysis, to be carried out according to
refs 48,49, shows that they can make the system fully gapped
(see Methods). It is important to stress that, given a specific
filling, a generic interaction does not necessarily stabilize a
gapped phase. Explicit cases are discussed in the following.

Numerical results on magnetic crystals for I ¼ 1. To fully
characterize the properties of this hierarchy of gapped phases, we
perform numerical simulations for the simplest case I ¼ 1. We
employ the density-matrix renormalization group (DMRG)
algorithm50 that in one dimension provides essentially exact
results (see Methods) and allows us to explore the cases of even q
and p41, which are not easily accessible with bosonization.
We take for simplicity O0 ¼Oð1Þ ¼

ffiffiffi
2
p

O (gð1Þm ¼
ffiffiffi
2
p

and is
independent of m).

The results in Fig. 2a are related to the fillings n¼ 1 = 2, 1 = 3
and 2 = 3 with kSO¼p/3 and display the density profile hn̂ji and
the magnetization hM̂a

j i �
P

m;m0 ĥc
y
j;m Sa½ �m;m0 ĉj;m0 i, where Sa is a

ð2I þ 1Þ-dimensional representation of the SU(2) spin operator
(a¼ x, y, z). The plots show that the incompressible phases are
characterized by both density and magnetic order.

Let us begin with the density order, considering, for example,
the case n¼ 1 = 3; here a nearest-neighbour interaction stabilizes a
density wave with one particle every three sites. Note that in the
usual SU(3) Hubbard model (O¼ 0, no gauge potential) a
nearest-neighbour interaction only stabilizes a density wave with
at least one particle every two sites. Conversely, for U,V¼ 0
(no interactions) no gapped phases exist at this filling. More
generally, the simultaneous presence of interactions and of the
(commensurate) SOC proves to be crucial in all the cases
considered in Fig. 2a both for the opening of the gap and for the
crafting of the properties of the resulting insulator.

Concerning magnetic order, in all the cases considered in
Fig. 2a we observe that hM̂z

j i¼ 0, which implies that in every site
the ±m nuclear-spin components have the same occupation
numbers. Magnetization thus lays in the x–y plane and winds as a
function of position in ways that depend on the filling (see the
sketches in the upper panel of Fig. 2c for I ¼ 1).

The density and magnetic ordering found in the DMRG
simulations becomes transparent by considering the limit
O(1)/tc1, O(1)/Uc1. Since the discussion of this limit easily

generalizes to every value of I , provided only that gðIÞm is
independent of m, we discuss it in full generality, although for the
present case I ¼ 1. The Hamiltonian Ĥ1þĤ2 is invariant under
the Z2I þ 1 group related to the on-site transformation mþ 1
(here I þ 1 � �I), and is diagonalized by 2I þ 1 local
eigenmodes of the form:

d̂j;l¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffi

2I þ 1
p

X
m

olmĉj;m; o¼ ei2p = ð2I þ 1Þ; ð5Þ

with l¼ 0; . . . ; 2I . As Ĥ0 is SU(2I þ 1) invariant, it is
unaffected by this basis change. However, the on-site energy of
each transformed spin state depends both on the site j and on kSO:

Ej;l¼ 2OðIÞcos 2pl
2I þ 1 þ 2kSOj
h i

(see the plot in Fig. 3a for I ¼ 1

and kSO¼p/3).
If for every site one only considers the states with lowest

energy, one intuitively realizes that when the mean interparticle
space n� 1 is commensurate with the space periodicity of ej,l,
gapped density waves can appear. In addition, atoms will be
magnetized according to the spin state d̂j;l, which minimizes the
energy at site j. We argue that this is the nature of the states that

are reported in Fig. 2a and that we have accordingly dubbed
‘magnetic crystals’.

To substantiate our claim, in Fig. 3c we compute hn̂j;li �
hd̂yj;ld̂j;li for the same states observed in Fig. 2a (the reader can

easily verify that
P

l n̂j;l
� �

¼ n̂j
� �

). The clear patterns plotted in
the three panels of Fig. 3c demonstrate that equation (5) identifies
the best spin basis for understanding this problem, even if we
work in the limit O(1)/tB1. To further elaborate on this point, let
us consider the large U limit for kSO¼ p/3 with an average density
of one particle every two sites (n¼ 1=2). In the absence of
hopping the ground state is highly degenerate. With a small,
finite, hopping the system will lower its energy by delocalizing the
particles. This tendency is however strongly suppressed by the
large on-site energy U. The resulting competition leads to
the formation of dimers locked together to form a crystal as
shown in Fig. 3c (for other values of kSO see the Supplementary
Figs 1 and 2 and the Supplementary Note 1).
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Figure 2 | Density and magnetic order of the magnetic crystals. Density

n̂ih i and magnetic order hM̂a
i i of the fractional phases at n¼ 1 = 2, 1 = 3 and

2 = 3 (from left to right) for: (a) I ¼ 1, kSO¼p/3 and (b) I ¼ 1 = 2, kSO¼p/2

as obtained from DMRG simulations of a system of length L¼ 96 with

OðIÞ = t¼ 1. For the interaction parameters see the panels. Since the system

is a crystal with small boundary effects, for a better readability we only plot

its central part. (c) Sketch of the density (red balls with radius related to

n̂j

� �
) and magnetic properties (blue arrows representing the vector hM̂a

j i)
of the insulators at n¼ 1 = 2, 1 = 3 and 2 = 3 (from left to right) for I ¼ 1 and

I ¼ 1 = 2.
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This simple model provides a physical intuition of the fact that
Ĥ1þĤ2 induces magnetic crystals at the fillings in equation (1),
thus complementing the information provided by bosonization
for odd q and by DMRG for the other considered cases. The
different magnetic properties in the x–y plane of the states with
different l determine the patterns observed in Fig. 2. Moreover,
the model shows that the crystals break the symmetry ŶZ,
since ŶZd̂j;lŶyZ ¼ d̂jþ Z;l� ZkSOð2I þ 1Þ =p and are thus degenerate
with other equivalent configurations obtained through the
action of ŶZ.

In the Methods we quantify the gap protecting these states,
which supplies a temperature range where the defining properties
of these systems can be observed. In addition, a gap protects the
existence of the magnetic crystal in the presence of a slight
breaking of the Z2I þ 1 symmetry due to the gðIÞm . We also present
numerical simulations in the presence of a trap, showing that for
properly tuned densities, the typical patterns of the mentioned
insulators can still appear. In addition, we elaborate on the
possibility of measuring the defining features of such insulators.

Magnetic crystals for I ¼ 1 = 2. The case I ¼ 1 = 2 is peculiar and
needs to be considered separately. Here Ĥ2 induces an additional
coupling between states that are already coupled by Ĥ1. For this
case we thus set Ĥ2¼ 0 (see ref. 51 for the study of the model
at high filling, n¼ 1). Let us begin by considering the non-
interacting case and the filling n¼ 1. In the presence of Ĥ1, only
two of the four gapless modes of the non-interacting system are
coupled and become gapped52. Exploiting the presence of a
lattice, it is however possible to invoke the equivalence of
momenta on shifts of 2p and hence to derive the additional
condition kFþ 2kSO¼ � kFþ 2p to force the two remaining
gapless modes to become gapped. Together with kSO¼ kF it
ensures that the system enters a gapped phase at n¼ 1 (see
Fig. 1d). Contrary to the previous case, kSO¼p/2 and thus the
resulting gapped phase is a lattice effect, without a proper
continuum limit.

Bosonization can provide an analytical description of the
mechanisms that lead to the appearance of the gapped phases for
interacting systems and shows that, similarly to the non-
interacting case, kSO¼ p/2 is a necessary condition for p¼ 1
and q odd. Avoiding unessential details, we only mention that
through the explicit study of the I ¼ 1 = 2 case, for which precise
mappings between the microscopic interacting model and the
bosonization parameters are known, in the Methods we argue
that the higher the value of q, the longer the range of the
interactions required to let the gapped phase appear (see
Supplementary Figs 5 and 6 and Supplementary Note 2 for
additional information on the case kSOap/2 and on the gapping
mechanism).

DMRG simulations for I ¼ 1 = 2 are shown in Fig. 2b; in this
case the Hamiltonian is real and thus hM̂y

j i¼ 0: the magnetization
develops along the x axis only (see the sketches in Fig. 2c for
I ¼ 1 = 2). Again, this behaviour can be understood through the
analysis of the model for O/tc1 and O/Uc1 (gð1 = 2Þ

m ¼ 1): for
I ¼ 1 = 2, the modes d̂j;l are the eigenstates of M̂x

j (see Fig. 3b,d).

Helical liquids. According to the previous discussion, for I � 1
gapped phases at the fillings in equation (1) arise in the inter-
acting system only when Ĥ2 6¼ 0 and, for I ¼ 1 = 2, when
kSO¼p/2 (lattice effect). More generally, explicit inspection has
shown that even when Ĥ2¼ 0 the condition kSO¼ p = ð2I þ 1Þ
for I � 1 can open a full gap through a high-order process,
which exploits the presence of a lattice (that is, of momenta
identification on shifts of 2p). When these conditions are not met,
and thus the full gap does not develop, we show that for the
fillings in equation (1) the system described by Ĥ0þĤ1 is a
helical liquid11.

An intuition for this phenomenology is again provided by
the non-interacting case Ĥint¼ 0 and q¼ 1. Here the two
Fermi edges at m¼ � I and k¼±kF, respectively, remain
unperturbed (see Fig. 1b) and represent two gapless helical
fermionic modes, which are the lowest-energy excitations of the
system. Bosonization techniques applied to the case Ĥint 6¼ 0 for
qZ1 and odd clearly pinpoint the helical nature of the
low-energy spectrum, although the gapless modes for q41 are
linear combinations of the original modes. In addition, their
conductance is fractional11: these two properties define a
fractional helical liquid. Similarly to the magnetic crystals,
bosonization reveals the existence of requirements on the range
and intensity of the atom–atom repulsion.

Numerically we cannot fully access the helical nature of the
first excitations; we rather diagnose the existence of a helical
ground state through two observable quantities. First, as a
consequence of the existence of two gapless modes, the
low-energy spectrum is described by a conformal field theory
in 1þ 1 dimensions with central charge c¼ 1. Second, the
system is characterized by a current pattern hĴ j;mi, where

Ĵ j;m � � itĉyj;mĉjþ 1;mþH:c:, which is different from zero and
features a flow direction related to the sign of m.

Our numerical results for the case I ¼ 1, kSO¼ p/3 and n¼ 2
3

are shown in Fig. 4. For ground states of theories with a low-
energy conformal limit, the Calabrese–Cardy formula53 predicts
that the entanglement entropy S ‘ð Þ¼ �Tr r‘logr‘½ �, obtained
through a bipartition of the system into the two blocks f1; . . . ‘g
and f‘þ 1; . . . Lg (r‘ is the reduced density matrix of
the block of size ‘), should be proportional to c:
Sð‘Þ¼Aþ c = 6log½2L =psinð‘p = LÞ� (for open boundary
conditions). Figure 4a shows Sð‘Þ as computed through DMRG
simulations for L¼ 192 and a fit with the previous formula
leaving A and c as free parameters. The result clearly indicates
c¼ 1 (see Supplementary Fig. 4 and Supplementary Note 1 for
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another case). The current profile hĴ j;mi displayed in Fig. 4c
shows a finite saturated value for jBL/2 and m¼±1 (note that
they flow in different directions); for m¼ 0 the absence of a
current is imposed by symmetry reasons. The oscillations are a
boundary and finite-size effect and decay to zero for L-N (see
Supplementary Fig. 3 and Supplementary Note 1). Note that in
this case, even if kSO¼ p = ð2I þ 1Þ, the system is gapless and thus
amenable to the study of helical properties.

The simultaneous presence of two gapless modes (c¼ 1) and of
helical current patterns, indicating the presence of a helical state,
results from the interplay between interactions and the gauge
potential. In the non-interacting case, at this filling the system has
three gapless edge modes, which reflect in a central charge c¼ 3,
as shown in Fig. 4b. On the other hand, if we tune O¼ 0 (and
thus kSO disappears from the Hamiltonian), the model is
equivalent to a SU(3) Hubbard model, which cannot develop
helical currents, since the Hamiltonian is real. Even the milder
request Oa0, kSO¼ 0 results in a state without helical currents
for the same reason.

Discussion
In this article we have provided an analytical and numerical study
of spin–orbit coupled alkaline-earth(-like) gases and demon-
strated the existence of a full hierarchy of gapped and gapless
phases with exotic properties. We have characterized several
different behaviours ranging from magnetic crystals to helical
phases11, identifying the effect of the simultaneous presence of
interactions and gauge potentials. The discussed phases can be
experimentally realised in state-of-the-art cold-atom laboratories.

An interesting and alternative interpretation of our results in
terms of an unconventional fractional quantum Hall effect in the
TTL follows from noticing that Ĥ0þĤ1 can be interpreted as a
spinless fermionic model with one (finite) synthetic dimension
coupled to a synthetic magnetic field42,43. The presence or
absence of Ĥ2 corresponds to different boundary conditions
along the synthetic dimension, a feature that is relevant only for
I4 1 = 2 because, for I ¼ 1 = 2, Hamiltonian Ĥ2 connects states
that are already linked by Ĥ1. Thus, one-dimensional alkaline-
earth(-like) gases provide access to the physics of (quasi-)two-
dimensional models through the mapping of the nuclear spin
states to a (finite) synthetic dimension. In the system considered

in this article, the synthetic lattice is pierced by a magnetic gauge
potential with flux per plaquette F/F0¼ kSO/p (F0 is the
quantum of flux)43.

For I � 1 and Ĥ2 6¼ 0, the effective geometry of the system is
that of a narrow cylinder, since the synthetic-dimension length,
2I þ 1, is much smaller than the real-space one. In this limit,
usually called the TTL46,54, the fractional quantum Hall states are
density waves, with features coinciding with those presented in
this article. First, the filling n coincides with the ratio N/NF
between the number of particles and the number of magnetic
fluxes piercing the synthetic lattice, which is the well-known
condition for observing the Laughlin series in QHE. Second, the
density waves of the TTL for n¼ 1/q display one particle every q
sites, similarly to what we find in Fig. 2. In addition, the helical
properties that appear for Ĥ2¼ 0, that is, in an effective stripe
geometry, can be interpreted as precursors of the edge modes of
the QHE43. This fecund analogy is lost for I ¼ 1 = 2 (or for spin-
1/2 quantum liquids, such as degenerate electron gases): in a two-
leg geometry, there is no difference between a cylinder and a
stripe. Our study therefore suggests that alkaline-earth(-like)
atoms are a promising tool for bringing ultra-cold atomic gases
into the quantum Hall regime, a long-standing and yet to be
achieved goal, through the access of its thin-torus/stripe limit.

The appearance of the phenomenology that we have just
described is a priori unexpected. Indeed, the SU(2I þ 1)-
invariant interaction is, in the quasi-two-dimensional picture,
strongly anisotropic (short-ranged along the chain and infinite-
ranged in the synthetic direction), and does not resemble the
features neither of the Coulomb nor of the contact repulsion,
which are usually considered in the QHE theory. Spin–orbit
coupled alkaline-earth(-like) gases are a natural quantum
simulator of the physics of the fractional QHE in an array of
quantum wires48,49. More precisely, because of the unusual
properties of the interaction, we are dealing here with the TTL of
an unconventional form of QHE, and it is an exciting perspective
to investigate up to which point it shares features with the
standard QHE. More generally, large-I Fermi gases provide a
valuable experimental toolbox for the study of two-dimensional
exotic phases of matter through coupled arrays of one-
dimensional systems48,49,55–58. Moreover, even if in this work
we have explicitly addressed the SU(2I þ 1) case as relevant for
alkaline-earth-(like) atoms, we argue that our predictions should
extend to the situations where the SU(2I þ 1) symmetry is only
slightly broken, such as in several alkaline atomic gases.

The unprecedented versatility of these setups motivates further
speculations and research: we leave, for example, as an interesting
open perspective the extension of this study to multi-component
bosonic systems59–66.

Methods
Relation with Rashba SOC. Let us first explicitly display that the unitary trans-
formation Û defined in the Results leads to a Hamiltonian, which is formally
equivalent to a Rashba SOC model:

Û Ĥ0 þĤ1
� 	

Ûy ¼ � t
X
j;m

ei2kSOmĉ
y
j;mĉjþ 1;mþ h:c:

� �
þ

þĤint þO
X

j

XI � 1

m¼ �I
gðIÞm ĉ
y
j;mĉj;mþ 1 þ h:c:

� �
:

ð6Þ

We have already commented on the fact that the term proportional to t is the
lattice version of a Rashba SOC. The term proportional to O is related to a mag-
netic field applied along the x direction, perpendicular thus to the quantization axis

of the SOC; if gðIÞm assumes the value of the proper Clebsch–Gordan coefficient, the
equivalence is formally tight. Concerning interactions, it is natural to assume that
Ĥint depends only on the density operators n̂j;m , which are left unchanged by Û ;

thus: ÛĤintÛy ¼ Ĥint .
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Bosonization. In the following we briefly discuss the existence of the magnetic
crystals within the bosonization framework. The discussion follows the guidelines
set in refs 11,48,49. Central to the bosonization technique is the expression of
ĉr;mðxÞ (see the Results for the definition) as exp½ � irĵr;mðxÞ�, r¼±, where the
bosonic fields ĵr;mðxÞ, satisfy ½ĵr;mðxÞ; ĵr0 ;m0 x0ð Þ� ¼ � i r p sgn x0 � xð Þdr;r0dm;m0 .

We linearize the non-interacting part of Ĥ0 close to the Fermi energy and
subsequently introduce density–density interactions, such as Ĥint ; the low-energy
part of the full Ĥ0 can then be cast into the quadratic form

Ĥ0 ¼
X
m;m0

Z
dx ð @xĵmðxÞ @x ŷmðxÞ ÞMm;m0

@xĵm0 ðxÞ
@x ŷm0 ðxÞ


 �
ð7Þ

with Mm;m0 ¼ vF
�
ð2pÞdm;m0 þ Um;m0 ; vF is the Fermi velocity, and

f̂r;mðxÞ¼ ĵmðxÞ� rŷmðxÞ; Um;m0 describes the scattering processes induced

by Ĥint only.
To study the interplay of Ĥ1 þĤ2 and Ĥint , we formally rewrite the fermionic

operator as

ĉmðxÞ¼
X
n¼ 0

qn eið2nþ 1ÞkF x ĉy� ;mĉþ ;m
� �n

ĉþ ;m þ
�

þ e� ið2nþ 1ÞkF x ĉyþ ;mĉ� ;m
� �n

ĉ� ;m

� ð8Þ

which takes into account the non-linearities of the free spectrum, particularly
important when interactions are strong enough; qn are unknown coefficients.

Applying equation (8) to a single-term e� 2ikSOx ĉ
y
mðxÞ̂cmþ 1ðxÞ of Ĥ1 or to Ĥ2 we

get several contributions, of which those in the form:

e2i kF nþ n0 þ 1ð Þ� kSO½ �x X̂ym
� �n

ĉyþ ;mĉ� ;mþ 1 X̂
y
mþ 1

� �n0

ð9Þ

are of special interest. Here we have introduced the notation: X̂m � ĉy� ;mĉþ ;m ;
m¼ �I ; . . . ; I (with I þ 1 � �I ). The terms (9) are the only ones that
conserve momentum independently on the value of kSO, provided that

kF ¼ kSO = q; with q � nþ n0 þ 1: ð10Þ
In this case, when n¼ n0 (and thus q¼ 2nþ 1 is an odd integer), terms (9) coincide
with those in (4).

The bosonized version of such operators is:

cos n f̂þ ;m þ f̂� ;mþ f̂þ ;mþ 1 þ f̂� ;mþ 1

� �
þ

h
f̂þ ;m þ f̂� ;mþ 1

i
� cosÔm: ð11Þ

Note that ½Ôm; Ôm0 � ¼ 0 for m;m0 ¼ �I ; . . . ; I . When the operators Ôm are
relevant in the renormalization group sense (here we assume Ĥint to be such that
this is true), they minimize the quantity cos Om and in a semi-classic approach
cos Ôm 	 1� 1

2 Ô
2
m . Each of these terms donate a gap to two originally gapless

modes, so that the gapless Luttinger Hamiltonian (7) becomes fully gapped.
The existence of fractional phases with q even (n0 ¼ n±1) cannot be

straightforwardly explained using bosonization. Let us consider as an example the
case q¼ 2. For each term (9) we can choose n¼ 0 and n0 ¼ 1 but also n¼ 1 and
n0 ¼ 0, so that 2ð2I þ 1Þ sine-Gordon terms with non commuting arguments and
with the same scaling dimension appear. In this case a semi-classic approach
cannot be used and the solution of the resulting Hamiltonian is an interesting open
question.

In addition, we mention that the bosonization framework can be used to show
the existence of fractional insulating phases for p41 and q odd, by introducing a
fictitious coupling between different nuclear spin states of the form48:

Ĥ1 þĤ2 

X

j

XI � p

m¼ �I
e� 2ipkSO j ĉ

y
j;mĉj;mþ p þ

"

þ
Xp

z¼ 1

e� 2ipkSO j ĉ
y
j;I � pþ z ĉj;�I þ zþ 1 þH:c:

# ð12Þ

which models higher-order couplings between spin states with Dma±1.
Bosonization of this term yields results that are completely equivalent to the
previous ones, apart from the fillings at which gapped phases appear.

When we consider atoms with two nuclear spin states, namely I ¼ 1 = 2, we set
Ĥ2 ¼ 0. Gapped phases at fillings n¼ 1/q with odd q are stabilized by (9) and by

e2i kF � n� n0 � 1ð Þ� kSO½ �x X̂m
� 
n

ĉy� ;mĉþ ;mþ 1 X̂m þ 1
� 
n0

; ð13Þ

that can be derived following the same procedure used for the terms (9). With
m¼ � 1/2, they imply kSO¼ p/2 and kF¼ p/(2q), respectively. If we introduce the
charge (c) and spin (s) bosonic fields f̂r;s ¼ 1 =

ffiffiffi
2
p
½ĵc� rŷcþ sðĵs� rŷsÞ� the

Hamiltonian Ĥ0 can be written as

Ĥ0 ¼
X
l¼ c;s

ul

2p

Z
dx Kl @x ŷl

� �2
þ 1

Kl
@xĵlð Þ2


 �
; ð14Þ

Kl is the usual Luttinger parameter that takes into account the strength of the

interaction, ul¼ vF/Kl is the renormalized Fermi velocity. On the other hand the
terms (9) and (13) assume a bosonized form proportional to



X
Z¼ �

Z
dx cos

ffiffiffi
2
p

qĵc þ Zŷs

� �h i
ð15Þ

they couple the charge and the spin degrees of freedom. A renormalization-group
calculation shows that they are relevant when Kco3/q2, assuming a SU(2) invariant
interaction, that is, Ks¼ 1 (ref. 11). Physically, this means that an on-site repulsive
interaction, for which 1/2rKco1 (ref. 67), cannot stabilize a gapped phase for
qZ3. Longer-range interactions are thus necessary (for nearest-neighbour
repulsion, for instance, it is possible to achieve Kco1/2 (ref. 67)), and in general we
expect that, even for I � 1, the higher the value of q, the longer the range of the
interactions required to open the gap.

Experimental issues. The gapped phases in Fig. 3 at n¼ 1 = 2 and 2 = 3 are
stabilized by the solely on-site repulsion, and thus accessible in current experi-
mental settings16,44. It is therefore important to check for the presence of a
significant energy gap protecting the insulator. In Fig. 5a we show that for I ¼ 1
and n¼ 1 = 2 the gap, computed through exact diagonalization of a small system, is
of order Egap 
 t = 2, and is enhanced by the presence of repulsive interaction.
Since the gapped phases are crystals with negligible correlation length, the
calculation is reliable even if performed for a small system.

The presence of a harmonic confinement, introduced through

Ĥtr ¼
P
j;m

wjĉ
y
j;mĉj;m with wj ¼ �wðj� L = 2� 1 = 2Þ2 does not hinder the possibility

of observing the typical properties of the magnetic crystals discussed so far; in a
Thomas–Fermi spirit, they form in definite regions of the trap (see Fig. 5b).
In addition, the gap provides a clear temperature window, roughly estimated as
kBTtEgap, within which the physics of the state can be observed (kB is the
Boltzmann constant).

It is natural to envision that the density-spin patterns, which characterize these
gapped phases, could be unambiguously revealed through spin-resolved single-site
addressing. In addition, several alternative methods based on the coherent
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interaction between light and the atomic spin have already been proposed to detect
many-body phases with spin ordering. We mention, for example, techniques based
on Bragg scattering68, on polarization spectroscopy69 or on spatially resolved
imaging via non-resonant light70. However, even the less-demanding detection of a
gap for such low fillings would constitute a strong hint that the system has been
driven into one insulating phase of the hierarchy (1). Concerning the measurement
of the helical liquids, the detection of the currents Ĵ j;m has been reported in ref. 41
for a bosonic ladder and the same technique can be employed also in our setup.

Numerical simulations. DMRG is an algorithm that performs a search of the
ground state of a Hamiltonian in the space of matrix-product states, a class of states
with finite correlations characterized by the so-called bond link, D (ref. 50). In the
limit D¼ 1 matrix-product states are product states, whereas for larger values of D
more quantum correlations can be described.

We consider chains with open boundaries and length comprised between
L¼ 96 and 192; setting D¼ 200 we are able to describe the correlations in the states
with sufficient accuracy. With these parameters the effect of boundaries is
irrelevant and the errors on the observables are negligible on the scale of the
symbols used in the figures. In the simulations of the gapped crystals, convergence
is helped by the quantum numbers related to the conservation of each
magnetization

P
jnj,l; moreover, we find that it can be important to alternate the

infinite-size version of the algorithm with the finite-size one.
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