14,865 research outputs found
Integral Human Pose Regression
State-of-the-art human pose estimation methods are based on heat map
representation. In spite of the good performance, the representation has a few
issues in nature, such as not differentiable and quantization error. This work
shows that a simple integral operation relates and unifies the heat map
representation and joint regression, thus avoiding the above issues. It is
differentiable, efficient, and compatible with any heat map based methods. Its
effectiveness is convincingly validated via comprehensive ablation experiments
under various settings, specifically on 3D pose estimation, for the first time
ENIGMA: Efficient Learning-based Inference Guiding Machine
ENIGMA is a learning-based method for guiding given clause selection in
saturation-based theorem provers. Clauses from many proof searches are
classified as positive and negative based on their participation in the proofs.
An efficient classification model is trained on this data, using fast
feature-based characterization of the clauses . The learned model is then
tightly linked with the core prover and used as a basis of a new parameterized
evaluation heuristic that provides fast ranking of all generated clauses. The
approach is evaluated on the E prover and the CASC 2016 AIM benchmark, showing
a large increase of E's performance.Comment: Submitted to LPAR 201
Towards atomically precise manipulation of 2D nanostructures in the electron microscope
Despite decades of research, the ultimate goal of nanotechnology—top-down manipulation of individual atoms—has been directly achieved with only one technique: scanning probe microscopy. In this review, we demonstrate that scanning transmission electron microscopy (STEM) is emerging as an alternative method for the direct assembly of nanostructures, with possible applications in plasmonics, quantum technologies, and materials science. Atomically precise manipulation with STEM relies on recent advances in instrumentation that have enabled non-destructive atomicresolution imaging at lower electron energies. While momentum transfer from highly energetic electrons often leads to atom ejection, interesting dynamics can be induced when the transferable kinetic energies are comparable to bond strengths in the material. Operating in this regime, very recent experiments have revealed the potential for single-atom manipulation using the Ångströmsized electron beam. To truly enable control, however, it is vital to understand the relevant atomicscale phenomena through accurate dynamical simulations. Although excellent agreement between experiment and theory for the specific case of atomic displacements from graphene has been recently achieved using density functional theory molecular dynamics, in many other cases quantitative accuracy remains a challenge. We provide a comprehensive reanalysis of available experimental data on beam-driven dynamics in light of the state-of-the-art in simulations, and identify important targets for improvement. Overall, the modern electron microscope has great potential to become an atom-scale fabrication platform, especially for covalently bonded 2D nanostructures. We review the developments that have made this possible, argue that graphene is an ideal starting material, and assess the main challenges moving forward
Parity Doubling and the S Parameter Below the Conformal Window
We describe a lattice simulation of the masses and decay constants of the
lowest-lying vector and axial resonances, and the electroweak S parameter, in
an SU(3) gauge theory with and 6 fermions in the fundamental
representation. The spectrum becomes more parity doubled and the S parameter
per electroweak doublet decreases when is increased from 2 to 6,
motivating study of these trends as is increased further, toward the
critical value for transition from confinement to infrared conformality.Comment: 4 pages, 5 figures; to be submitted to PR
Extracellular Matrix Aggregates from Differentiating Embryoid Bodies as a Scaffold to Support ESC Proliferation and Differentiation
Embryonic stem cells (ESCs) have emerged as potential cell sources for tissue engineering and regeneration owing to its virtually unlimited replicative capacity and the potential to differentiate into a variety of cell types. Current differentiation strategies primarily involve various growth factor/inducer/repressor concoctions with less emphasis on the substrate. Developing biomaterials to promote stem cell proliferation and differentiation could aid in the realization of this goal. Extracellular matrix (ECM) components are important physiological regulators, and can provide cues to direct ESC expansion and differentiation. ECM undergoes constant remodeling with surrounding cells to accommodate specific developmental event. In this study, using ESC derived aggregates called embryoid bodies (EB) as a model, we characterized the biological nature of ECM in EB after exposure to different treatments: spontaneously differentiated and retinoic acid treated (denoted as SPT and RA, respectively). Next, we extracted this treatment-specific ECM by detergent decellularization methods (Triton X-100, DOC and SDS are compared). The resulting EB ECM scaffolds were seeded with undifferentiated ESCs using a novel cell seeding strategy, and the behavior of ESCs was studied. Our results showed that the optimized protocol efficiently removes cells while retaining crucial ECM and biochemical components. Decellularized ECM from SPT EB gave rise to a more favorable microenvironment for promoting ESC attachment, proliferation, and early differentiation, compared to native EB and decellularized ECM from RA EB. These findings suggest that various treatment conditions allow the formulation of unique ESC-ECM derived scaffolds to enhance ESC bioactivities, including proliferation and differentiation for tissue regeneration applications. © 2013 Goh et al
Effect of dietary omega-3 fatty acids on castrate-resistant prostate cancer and tumor-associated macrophages.
BackgroundM2-like macrophages are associated with the pathogenesis of castrate-resistant prostate cancer (CRPC). We sought to determine if dietary omega-3 fatty acids (ω-3 FAs) delay the development and progression of CRPC and inhibit tumor-associated M2-like macrophages.MethodsMycCap cells were grown subcutaneously in immunocompetent FVB mice. Mice were castrated when tumors reached 300 mm2. To study effects of dietary ω-3 FAs on development of CRPC, ω-3 or ω-6 diets were started 2 days after castration and mice sacrificed after early regrowth of tumors. To study ω-3 FA effects on progression of CRPC, tumors were allowed to regrow after castration before starting the diets. M2 (CD206+) macrophages were isolated from allografts to examine ω-3 FA effects on macrophage function. Omega-3 fatty acid effects on androgen-deprived RAW264.7 M2 macrophages were studied by RT-qPCR and a migration/ invasion assay.ResultsThe ω-3 diet combined with castration lead to greater MycCap tumor regression (tumor volume reduction: 182.2 ± 33.6 mm3) than the ω-6 diet (tumor volume reduction: 148.3 ± 35.2; p = 0.003) and significantly delayed the time to CRPC (p = 0.006). Likewise, the ω-3 diet significantly delayed progression of established castrate-resistant MycCaP tumors (p = 0.003). The ω-3 diet (as compared to the ω-6 diet) significantly reduced tumor-associated M2-like macrophage expression of CSF-1R in the CRPC development model, and matrix metallopeptidase-9 (MMP-9) and vascular endothelial growth factor (VEGF) in the CRPC progression model. Migration of androgen-depleted RAW264.7 M2 macrophages towards MycCaP cells was reversed by addition of docosahexaenoic acid (ω-3).ConclusionsDietary omega-3 FAs (as compared to omega-6 FAs) decreased the development and progression of CRPC in an immunocompetent mouse model, and had inhibitory effects on M2-like macrophage function. Clinical trials are warranted evaluating if a fish oil-based diet can delay the time to castration resistance in men on androgen deprivation therapy, whereas further preclinical studies are warranted evaluating fish oil for more advanced CRPC
Possible roles of Epstein-Barr virus in Castleman disease
<p>Abstract</p> <p>Background</p> <p>Complete resection seemed to be curative in patients with Castleman disease of any location but the disease is likely to be reactive in its pathogenesis. The relation between Epstein-Barr virus and Castleman disease has not been elucidated. We tried to define the role of Epstein-Barr virus in the pathogenesis of Castleman disease.</p> <p>Methods</p> <p>20 cases of Castleman disease were retrospectively reviewed from 1993 to 2006. At least 2 to 4 representative sections of formalin-fixed, paraffin-embedded specimens from each patient were obtained to examine the presence of EBV and its localization by hematoxylin-eosin stain, immunohistochemistry, polymerase chain reaction and In-situ hybridization</p> <p>Results</p> <p>Hyaline-vascular type was diagnosed in 18 cases, plasma cell type in 1 and mixed type in 1 case. All of them were positive for Epstein-Barr virus confirmed by PCR. For tumors that EBER(Epstein-Barr early region) signals mainly localized in the germinal centers have increased vascularity than cases with EBER detected in inter-follicular areas.</p> <p>Conclusion</p> <p>There is a strong association between Castleman disease and Epstein-Barr virus. EBV may have a potential role in angiogenesis of Castleman disease. For smaller lesion with high activity of angiogenesis but not amenable for curative resection, anti-angiogenesis medications may have a potential role to control the disease.</p
MRI in multiple myeloma : a pictorial review of diagnostic and post-treatment findings
Magnetic resonance imaging (MRI) is increasingly being used in the diagnostic work-up of patients with multiple myeloma. Since 2014, MRI findings are included in the new diagnostic criteria proposed by the International Myeloma Working Group. Patients with smouldering myeloma presenting with more than one unequivocal focal lesion in the bone marrow on MRI are considered having symptomatic myeloma requiring treatment, regardless of the presence of lytic bone lesions. However, bone marrow evaluation with MRI offers more than only morphological information regarding the detection of focal lesions in patients with MM. The overall performance of MRI is enhanced by applying dynamic contrast-enhanced MRI and diffusion weighted imaging sequences, providing additional functional information on bone marrow vascularization and cellularity. This pictorial review provides an overview of the most important imaging findings in patients with monoclonal gammopathy of undetermined significance, smouldering myeloma and multiple myeloma, by performing a 'total' MRI investigation with implications for the diagnosis, staging and response assessment. Main message aEuro cent Conventional MRI diagnoses multiple myeloma by assessing the infiltration pattern. aEuro cent Dynamic contrast-enhanced MRI diagnoses multiple myeloma by assessing vascularization and perfusion. aEuro cent Diffusion weighted imaging evaluates bone marrow composition and cellularity in multiple myeloma. aEuro cent Combined morphological and functional MRI provides optimal bone marrow assessment for staging. aEuro cent Combined morphological and functional MRI is of considerable value in treatment follow-up
"It's making contacts" : notions of social capital and implications for widening access to medical education
Acknowledgements Our thanks to the Medical Schools Council (MSC) of the UK for funding Study A; REACH Scotland for funding Study B; and Queen Mary University of London, and to the medical school applicants and students who gave their time to be interviewed. Our thanks also to Dr Sean Zhou and Dr Sally Curtis, and Manjul Medhi, for their help with data collection for studies A and B respectively. Our thanks also to Dr Lara Varpio, Uniformed Services University of the USA, for her advice and guidance on collating data sets and her comments on the draft manuscript.Peer reviewedPublisher PD
Mitochondrial phylogeography and demographic history of the Vicuña: implications for conservation
The vicuña (Vicugna vicugna; Miller, 1924) is a conservation success story, having recovered from near extinction in the 1960s to current population levels estimated at 275 000. However, lack of information about its demographic history and genetic diversity has limited both our understanding of its recovery and the development of science-based conservation measures. To examine the evolution and recent demographic history of the vicuña across its current range and to assess its genetic variation and population structure, we sequenced mitochondrial DNA from the control region (CR) for 261 individuals from 29 populations across Peru, Chile and Argentina. Our results suggest that populations currently designated as Vicugna vicugna vicugna and Vicugna vicugna mensalis comprise separate mitochondrial lineages. The current population distribution appears to be the result of a recent demographic expansion associated with the last major glacial event of the Pleistocene in the northern (18 to 22°S) dry Andes 14–12 000 years ago and the establishment of an extremely arid belt known as the 'Dry Diagonal' to 29°S. Within the Dry Diagonal, small populations of V. v. vicugna appear to have survived showing the genetic signature of demographic isolation, whereas to the north V. v. mensalis populations underwent a rapid demographic expansion before recent anthropogenic impacts
- …