279 research outputs found

    Mobility Support in User-Centric Networks

    Get PDF
    In this paper, an overview of challenges and requirements for mobility management in user-centric networks is given, and a new distributed and dynamic per-application mobility management solution is presented. After a brief summary of generic mobility management concepts, existing approaches from the distributed and peer-to-peer mobility management literature are introduced, along with their applicability or shortcomings in the UCN environment. Possible approaches to deal with the decentralized and highly dynamic nature of UCNs are also provided with a discussion and an introduction to potential future work

    Negative and positive selection of antigen-specific cytotoxic T lymphocytes affected by the α3 domain of MHC I molecules

    Get PDF
    THE α1 and α2 domains of major histocompatibility complex (MHC) class I molecules function in the binding and presentation of foreign peptides to the T-cell antigen receptor and control both negative and positive selection of the T-cell repertoire. Although the α3 domain of class I is not involved in peptide binding, it does interact with the T-cell accessory molecule, CDS. CDS is important in the selection of T cells as anti-CDS antibody injected into perinatal mice interfers with this process. We previously used a hybrid class I molecule with the α1/α2 domains from L^d and the α3 domain from Q7^b and showed that this molecule binds an L^d-restricted peptide but does not interact with CD8-dependent cytotoxic T lymphocytes. Expression of this molecule in transgenic mice fails to negatively select a subpopulation of anti-L^d cytotoxic T lymphocytes. In addition, positive selection of virus-specific L^d-restricted cytotoxic T lymphocytes does not occur. We conclude that besides the α1/α2 domains of class I, the α3 domain plays an important part in both positive and negative selection of antigen-specific cells

    Iterative Structure-Based Peptide-Like Inhibitor Design against the Botulinum Neurotoxin Serotype A

    Get PDF
    The botulinum neurotoxin serotype A light chain (BoNT/A LC) protease is the catalytic component responsible for the neuroparalysis that is characteristic of the disease state botulism. Three related peptide-like molecules (PLMs) were designed using previous information from co-crystal structures, synthesized, and assayed for in vitro inhibition against BoNT/A LC. Our results indicate these PLMS are competitive inhibitors of the BoNT/A LC protease and their Ki values are in the nM-range. A co-crystal structure for one of these inhibitors was determined and reveals that the PLM, in accord with the goals of our design strategy, simultaneously involves both ionic interactions via its P1 residue and hydrophobic contacts by means of an aromatic group in the P2′ position. The PLM adopts a helical conformation similar to previously determined co-crystal structures of PLMs, although there are also major differences to these other structures such as contacts with specific BoNT/A LC residues. Our structure further demonstrates the remarkable plasticity of the substrate binding cleft of the BoNT/A LC protease and provides a paradigm for iterative structure-based design and development of BoNT/A LC inhibitors

    Background Light in Potential Sites for the ANTARES Undersea Neutrino Telescope

    Get PDF
    The ANTARES collaboration has performed a series of {\em in situ} measurements to study the background light for a planned undersea neutrino telescope. Such background can be caused by 40^{40}K decays or by biological activity. We report on measurements at two sites in the Mediterranean Sea at depths of 2400~m and 2700~m, respectively. Three photomultiplier tubes were used to measure single counting rates and coincidence rates for pairs of tubes at various distances. The background rate is seen to consist of three components: a constant rate due to 40^{40}K decays, a continuum rate that varies on a time scale of several hours simultaneously over distances up to at least 40~m, and random bursts a few seconds long that are only correlated in time over distances of the order of a meter. A trigger requiring coincidences between nearby photomultiplier tubes should reduce the trigger rate for a neutrino telescope to a manageable level with only a small loss in efficiency.Comment: 18 pages, 8 figures, accepted for publication in Astroparticle Physic

    Notch-induced T cell development requires phosphoinositide-dependent kinase 1

    Get PDF
    Phosphoinositide-dependent kinase l (PDK1) phosphorylates and activates multiple AGC serine kinases, including protein kinase B (PKB), p70Ribosomal S6 kinase (S6K) and p90Ribosomal S6 kinase (RSK). PDK1 is required for thymocyte differentiation and proliferation, and herein, we explore the molecular basis for these essential functions of PDK1 in T lymphocyte development. A key finding is that PDK1 is required for the expression of key nutrient receptors in T cell progenitors: CD71 the transferrin receptor and CD98 a subunit of L-amino acid transporters. PDK1 is also essential for Notch-mediated trophic and proliferative responses in thymocytes. A PDK1 mutant PDK1 L155E, which supports activation of PKB but no other AGC kinases, can restore CD71 and CD98 expression in pre-T cells and restore thymocyte differentiation. However, PDK1 L155E is insufficient for thymocyte proliferation. The role of PDK1 in thymus development thus extends beyond its ability to regulate PKB. In addition, PDK1 phosphorylation of AGC kinases such as S6K and RSK is also necessary for thymocyte development

    Analytic philosophy for biomedical research: the imperative of applying yesterday's timeless messages to today's impasses

    Get PDF
    The mantra that "the best way to predict the future is to invent it" (attributed to the computer scientist Alan Kay) exemplifies some of the expectations from the technical and innovative sides of biomedical research at present. However, for technical advancements to make real impacts both on patient health and genuine scientific understanding, quite a number of lingering challenges facing the entire spectrum from protein biology all the way to randomized controlled trials should start to be overcome. The proposal in this chapter is that philosophy is essential in this process. By reviewing select examples from the history of science and philosophy, disciplines which were indistinguishable until the mid-nineteenth century, I argue that progress toward the many impasses in biomedicine can be achieved by emphasizing theoretical work (in the true sense of the word 'theory') as a vital foundation for experimental biology. Furthermore, a philosophical biology program that could provide a framework for theoretical investigations is outlined

    Characterization of Developmental Pathway of Natural Killer Cells from Embryonic Stem Cells In Vitro

    Get PDF
    In vitro differentiation of embryonic stem (ES) cells is often used to study hematopoiesis. However, the differentiation pathway of lymphocytes, in particular natural killer (NK) cells, from ES cells is still unclear. Here, we used a multi-step in vitro ES cell differentiation system to study lymphocyte development from ES cells, and to characterize NK developmental intermediates. We generated embryoid bodies (EBs) from ES cells, isolated CD34(+) EB cells and cultured them on OP9 stroma with a cocktail of cytokines to generate cells we termed ES-derived hematopoietic progenitors (ES-HPs). EB cell subsets, as well as ES-HPs derived from EBs, were tested for NK, T, B and myeloid lineage potentials using lineage specific cultures. ES-HPs derived from CD34(+) EBs differentiated into NK cells when cultured on OP9 stroma with IL-2 and IL-15, and into T cells on Delta-like 1-transduced OP9 (OP9-DL1) with IL-7 and Flt3-L. Among CD34(+) EB cells, NK and T cell potentials were detected in a CD45(−) subset, whereas CD45(+) EB cells had myeloid but not lymphoid potentials. Limiting dilution analysis of ES-HPs generated from CD34(+)CD45(−) EB cells showed that CD45(+)Mac-1(−)Ter119(−) ES-HPs are highly enriched for NK progenitors, but they also have T, B and myeloid potentials. We concluded that CD45(−)CD34(+) EB cells have lymphoid potential, and they differentiate into more mature CD45(+)Lin(−) hematopoietic progenitors that have lymphoid and myeloid potential. NK progenitors among ES-HPs are CD122(−) and they rapidly acquire CD122 as they differentiate along the NK lineage

    Potent New Small-Molecule Inhibitor of Botulinum Neurotoxin Serotype A Endopeptidase Developed by Synthesis-Based Computer-Aided Molecular Design

    Get PDF
    Botulinum neurotoxin serotype A (BoNTA) causes a life-threatening neuroparalytic disease known as botulism. Current treatment for post exposure of BoNTA uses antibodies that are effective in neutralizing the extracellular toxin to prevent further intoxication but generally cannot rescue already intoxicated neurons. Effective small-molecule inhibitors of BoNTA endopeptidase (BoNTAe) are desirable because such inhibitors potentially can neutralize the intracellular BoNTA and offer complementary treatment for botulism. Previously we reported a serotype-selective, small-molecule BoNTAe inhibitor with a Kiapp value of 3.8±0.8 µM. This inhibitor was developed by lead identification using virtual screening followed by computer-aided optimization of a lead with an IC50 value of 100 µM. However, it was difficult to further improve the lead from micromolar to even high nanomolar potency due to the unusually large enzyme-substrate interface of BoNTAe. The enzyme-substrate interface area of 4,840 Å2 for BoNTAe is about four times larger than the typical protein-protein interface area of 750–1,500 Å2. Inhibitors must carry several functional groups to block the unusually large interface of BoNTAe, and syntheses of such inhibitors are therefore time-consuming and expensive. Herein we report the development of a serotype-selective, small-molecule, and competitive inhibitor of BoNTAe with a Ki value of 760±170 nM using synthesis-based computer-aided molecular design (SBCAMD). This new approach accounts the practicality and efficiency of inhibitor synthesis in addition to binding affinity and selectivity. We also report a three-dimensional model of BoNTAe in complex with the new inhibitor and the dynamics of the complex predicted by multiple molecular dynamics simulations, and discuss further structural optimization to achieve better in vivo efficacy in neutralizing BoNTA than those of our early micromolar leads. This work provides new insight into structural modification of known small-molecule BoNTAe inhibitors. It also demonstrates that SBCAMD is capable of improving potency of an inhibitor lead by nearly one order of magnitude, even for BoNTAe as one of the most challenging protein targets. The results are insightful for developing effective small-molecule inhibitors of protein targets with large active sites

    The Role of Host Genetics in Susceptibility to Influenza: A Systematic Review

    Get PDF
    Background: The World Health Organization has identified studies of the role of host genetics on susceptibility to severe influenza as a priority. A systematic review was conducted to summarize the current state of evidence on the role of host genetics in susceptibility to influenza (PROSPERO registration number: CRD42011001380). Methods and Findings: PubMed, Web of Science, the Cochrane Library, and OpenSIGLE were searched using a pre-defined strategy for all entries up to the date of the search. Two reviewers independently screened the title and abstract of 1,371 unique articles, and 72 full text publications were selected for inclusion. Mouse models clearly demonstrate that host genetics plays a critical role in susceptibility to a range of human and avian influenza viruses. The Mx genes encoding interferon inducible proteins are the best studied but their relevance to susceptibility in humans is unknown. Although the MxA gene should be considered a candidate gene for further study in humans, over 100 other candidate genes have been proposed. There are however no data associating any of these candidate genes to susceptibility in humans, with the only published study in humans being under-powered. One genealogy study presents moderate evidence of a heritable component to the risk of influenza-associated death, and while the marked familial aggregation of H5N1 cases is suggestive of host genetic factors, this remains unproven. Conclusion: The fundamental question ‘‘Is susceptibility to severe influenza in humans heritable?’ ’ remains unanswered. No

    Analysis of the CCR5 gene coding region diversity in five South American populations reveals two new non-synonymous alleles in Amerindians and high CCR5*D32 frequency in Euro-Brazilians

    Get PDF
    The CC chemokine receptor 5 (CCR5) molecule is an important co-receptor for HIV. The effect of the CCR5*D32 allele in susceptibility to HIV infection and AIDS disease is well known. Other alleles than CCR5*D32 have not been analysed before, neither in Amerindians nor in the majority of the populations all over the world. We investigated the distribution of the CCR5 coding region alleles in South Brazil and noticed a high CCR5*D32 frequency in the Euro-Brazilian population of the Paraná State (9.3%), which is the highest thus far reported for Latin America. The D32 frequency is even higher among the Euro-Brazilian Mennonites (14.2%). This allele is uncommon in Afro-Brazilians (2.0%), rare in the Guarani Amerindians (0.4%) and absent in the Kaingang Amerindians and the Oriental-Brazilians. R223Q is common in the Oriental-Brazilians (7.7%) and R60S in the Afro-Brazilians (5.0%). A29S and L55Q present an impaired response to β-chemokines and occurred in Afro- and Euro-Brazilians with cumulative frequencies of 4.4% and 2.7%, respectively. Two new non-synonymous alleles were found in Amerindians: C323F (g.3729G > T) in Guarani (1.4%) and Y68C (g.2964A > G) in Kaingang (10.3%). The functional characteristics of these alleles should be defined and considered in epidemiological investigations about HIV-1 infection and AIDS incidence in Amerindian populations
    corecore