163 research outputs found

    Comparative genomics of prevaccination and modern Bordetella pertussis strains

    Get PDF
    Contains fulltext : 89571.pdf (publisher's version ) (Open Access)BACKGROUND: Despite vaccination since the 1950s, pertussis has persisted and resurged. It remains a major cause of infant death worldwide and is the most prevalent vaccine-preventable disease in developed countries. The resurgence of pertussis has been associated with the expansion of Bordetella pertussis strains with a novel allele for the pertussis toxin (Ptx) promoter, ptxP3, which have replaced resident ptxP1 strains. Compared to ptxP1 strains, ptxP3 produce more Ptx resulting in increased virulence and immune suppression. To elucidate how B. pertussis has adapted to vaccination, we compared genome sequences of two ptxP3 strains with four strains isolated before and after the introduction vaccination. RESULTS: The distribution of SNPs in regions involved in transcription and translation suggested that changes in gene regulation play an important role in adaptation. No evidence was found for acquisition of novel genes. Modern strains differed significantly from prevaccination strains, both phylogenetically and with respect to particular alleles. The ptxP3 strains were found to have diverged recently from modern ptxP1 strains. Differences between ptxP3 and modern ptxP1 strains included SNPs in a number of pathogenicity-associated genes. Further, both gene inactivation and reactivation was observed in ptxP3 strains relative to modern ptxP1 strains. CONCLUSIONS: Our work suggests that B. pertussis adapted by successive accumulation of SNPs and by gene (in)activation. In particular changes in gene regulation may have played a role in adaptation

    Association of MC1R Variants and host phenotypes with melanoma risk in CDKN2A mutation carriers: a GenoMEL study

    Get PDF
    <p><b>Background</b> Carrying the cyclin-dependent kinase inhibitor 2A (CDKN2A) germline mutations is associated with a high risk for melanoma. Penetrance of CDKN2A mutations is modified by pigmentation characteristics, nevus phenotypes, and some variants of the melanocortin-1 receptor gene (MC1R), which is known to have a role in the pigmentation process. However, investigation of the associations of both MC1R variants and host phenotypes with melanoma risk has been limited.</p> <p><b>Methods</b> We included 815 CDKN2A mutation carriers (473 affected, and 342 unaffected, with melanoma) from 186 families from 15 centers in Europe, North America, and Australia who participated in the Melanoma Genetics Consortium. In this family-based study, we assessed the associations of the four most frequent MC1R variants (V60L, V92M, R151C, and R160W) and the number of variants (1, ≥2 variants), alone or jointly with the host phenotypes (hair color, propensity to sunburn, and number of nevi), with melanoma risk in CDKN2A mutation carriers. These associations were estimated and tested using generalized estimating equations. All statistical tests were two-sided.</p> <p><b>Results</b> Carrying any one of the four most frequent MC1R variants (V60L, V92M, R151C, R160W) in CDKN2A mutation carriers was associated with a statistically significantly increased risk for melanoma across all continents (1.24 × 10−6 ≤ P ≤ .0007). A consistent pattern of increase in melanoma risk was also associated with increase in number of MC1R variants. The risk of melanoma associated with at least two MC1R variants was 2.6-fold higher than the risk associated with only one variant (odds ratio = 5.83 [95% confidence interval = 3.60 to 9.46] vs 2.25 [95% confidence interval = 1.44 to 3.52]; Ptrend = 1.86 × 10−8). The joint analysis of MC1R variants and host phenotypes showed statistically significant associations of melanoma risk, together with MC1R variants (.0001 ≤ P ≤ .04), hair color (.006 ≤ P ≤ .06), and number of nevi (6.9 × 10−6 ≤ P ≤ .02).</p> <p><b>Conclusion</b> Results show that MC1R variants, hair color, and number of nevi were jointly associated with melanoma risk in CDKN2A mutation carriers. This joint association may have important consequences for risk assessments in familial settings.</p&gt

    Accumulation of fibronectin in the heart after myocardial infarction: a putative stimulator of adhesion and proliferation of adipose-derived stem cells

    Get PDF
    Stem cell therapy is a promising treatment after myocardial infarction (MI). A major problem in stem cell therapy, however, is that only a small proportion of stem cells applied to the heart can survive and differentiate into cardiomyocytes. We hypothesized that fibronectin in the heart after MI might positively affect stem cell adhesion and proliferation at the site of injury. Therefore, we investigated the kinetics of attachment and proliferation of adipose-tissue-derived stem cells (ASC) on fibronectin and analysed the time frame and localization of fibronectin accumulation in the human heart after MI. ASCs were seeded onto fibronectin-coated and uncoated culture wells. The numbers of adhering ASC were quantified after various incubation periods (5-30 min) by using DNA quantification assays. The proliferation of ASC was quantified after culturing ASC for various periods (0-9 days) by using DNA assays. Fibronectin accumulation after MI was quantified by immunohistochemical staining of heart sections from 35 patients, after different infarction periods (0-14 days old). We found that ASC attachment and proliferation on fibronectin-coated culture wells was significantly higher than on uncoated wells. Fibronectin deposition was significantly increased from 12 h to 14 days post-infarction, both in the infarction area and in the border-zone, compared with the uninfarcted heart. Our results suggest that a positive effect of fibronectin on stem cells in the heart can only be achieved when stem cell therapy is applied at least 12 h after MI, when the accumulation of fibronectin occurs in the infarcted heart. © 2008 The Author(s)

    T lymphocytes derived from human cord blood provide effective antitumor immunotherapy against a human tumor

    Get PDF
    Abstract Background Although the graft-versus-tumor (GVT) effect of donor-derived T cells after allogeneic hematopoietic stem cell transplantation has been used as an effective adoptive immunotherapy, the antitumor effects of cord blood (CB) transplantation have not been well studied. Methods We established the animal model by transplantation of CB mononuclear cells and/or tumor cells into NOD/SCID mice. The presence of CB derived T cells in NOD/SCID mice or tumor tissues were determined by flow cytometric and immunohistochemical analysis. The anti-tumor effects of CB derived T cells against tumor was determined by tumor size and weight, and by the cytotoxicity assay and ELISPOT assay of T cells. Results We found dramatic tumor remission following transfer of CB mononuclear cells into NOD/SCID mice with human cervical tumors with a high infiltration of CD3+ T cells in tumors. NOD/SCID mice that receive neonatal CB transplants have reconstituted T cells with significant antitumor effects against human cervical and lung tumors, with a high infiltration of CD3+ T cells showing dramatic induction of apoptotic cell death. We also confirmed that T cells showed tumor specific antigen cytotoxicity in vitro. In adoptive transfer of CD3+ T cells into mice with pre-established tumors, we observed much higher antitumor effects of HPV-specific T cells by ELISPOT assays. Conclusions Our results show that CB derived T lymphocytes will be useful for novel immunotherapeutic candidate cells for therapy of several tumors in clinic.</p

    Acellular Bone Marrow Extracts Significantly Enhance Engraftment Levels of Human Hematopoietic Stem Cells in Mouse Xeno-Transplantation Models

    Get PDF
    Hematopoietic stem cells (HSC) derived from cord blood (CB), bone marrow (BM), or mobilized peripheral blood (PBSC) can differentiate into multiple lineages such as lymphoid, myeloid, erythroid cells and platelets. The local microenvironment is critical to the differentiation of HSCs and to the preservation of their phenotype in vivo. This microenvironment comprises a physical support supplied by the organ matrix as well as tissue specific cytokines, chemokines and growth factors. We investigated the effects of acellular bovine bone marrow extracts (BME) on HSC in vitro and in vivo. We observed a significant increase in the number of myeloid and erythroid colonies in CB mononuclear cells (MNC) or CB CD34+ cells cultured in methylcellulose media supplemented with BME. Similarly, in xeno-transplantation experiments, pretreatment with BME during ex-vivo culture of HSCs induced a significant increase in HSC engraftment in vivo. Indeed, we observed both an increase in the number of differentiated myeloid, lymphoid and erythroid cells and an acceleration of engraftment. These results were obtained using CB MNCs, BM MNCs or CD34+ cells, transplanted in immuno-compromised mice (NOD/SCID or NSG). These findings establish the basis for exploring the use of BME in the expansion of CB HSC prior to HSC Transplantation. This study stresses the importance of the mechanical structure and soluble mediators present in the surrounding niche for the proper activity and differentiation of stem cells

    Effectiveness of joint mobilisation after cast immobilisation for ankle fracture: a protocol for a randomised controlled trial [ACTRN012605000143628]

    Get PDF
    BACKGROUND: Passive joint mobilisation is a technique frequently used by physiotherapists to reduce pain, improve joint movement and facilitate a return to activities after injury, but its use after ankle fracture is currently based on limited evidence. The primary aim of this trial is to determine if adding joint mobilisation to a standard exercise programme is effective and cost-effective after cast immobilisation for ankle fracture in adults. METHODS/DESIGN: Ninety participants will be recruited from the physiotherapy departments of three teaching hospitals and randomly allocated to treatment or control groups using a concealed procedure. All participants will perform an exercise programme. Participants in the treatment group will also receive joint mobilisation twice a week for four weeks. Blinded follow-up assessments will be conducted four, 12 and 24 weeks after randomisation. The primary outcome measures will be the Lower Extremity Functional Scale and the Assessment of Quality of Life. Secondary outcomes will include measures of impairments, activity limitation and participation. Data on the use of physiotherapy services and participants' out-of-pocket costs will be collected for the cost-effective and cost-utility analyses. To test the effects of treatment, between-group differences will be examined with analysis of covariance using a regression approach. The primary conclusions will be based on the four-week follow-up data. DISCUSSION: This trial incorporates features known to minimise bias. It uses a pragmatic design to reflect clinical practice and maximise generalisability. Results from this trial will contribute to an evidence-based approach for rehabilitation after ankle fracture

    ALMS1-Deficient Fibroblasts Over-Express Extra-Cellular Matrix Components, Display Cell Cycle Delay and Are Resistant to Apoptosis

    Get PDF
    Alström Syndrome (ALMS) is a rare genetic disorder (483 living cases), characterized by many clinical manifestations, including blindness, obesity, type 2 diabetes and cardiomyopathy. ALMS is caused by mutations in the ALMS1 gene, encoding for a large protein with implicated roles in ciliary function, cellular quiescence and intracellular transport. Patients with ALMS have extensive fibrosis in nearly all tissues resulting in a progressive organ failure which is often the ultimate cause of death. To focus on the role of ALMS1 mutations in the generation and maintenance of this pathological fibrosis, we performed gene expression analysis, ultrastructural characterization and functional assays in 4 dermal fibroblast cultures from ALMS patients. Using a genome-wide gene expression analysis we found alterations in genes belonging to specific categories (cell cycle, extracellular matrix (ECM) and fibrosis, cellular architecture/motility and apoptosis). ALMS fibroblasts display cytoskeleton abnormalities and migration impairment, up-regulate the expression and production of collagens and despite the increase in the cell cycle length are more resistant to apoptosis. Therefore ALMS1-deficient fibroblasts showed a constitutively activated myofibroblast phenotype even if they do not derive from a fibrotic lesion. Our results support a genetic basis for the fibrosis observed in ALMS and show that both an excessive ECM production and a failure to eliminate myofibroblasts are key mechanisms. Furthermore, our findings suggest new roles for ALMS1 in both intra- and extra-cellular events which are essential not only for the normal cellular function but also for cell-cell and ECM-cell interactions

    Gender differences in the use of cardiovascular interventions in HIV-positive persons; the D:A:D Study

    Get PDF
    Peer reviewe
    corecore