128 research outputs found

    The GABBR1 locus and the G1465A variant is not associated with temporal lobe epilepsy preceded by febrile seizures

    Get PDF
    BACKGROUND: Polymorphism G1465A in the GABBR1 gene has been suggested as a risk factor for non-lesional temporal lobe epilepsy (TLE); however, this genetic association study has not been independently replicated. We attempted to replicate this study in our cohort of patients with TLE. Furthermore, we also analyzed the coding sequence of this gene and searched for disease-causing mutations. METHODS: We included 120 unrelated individuals with TLE that was preceded by febrile seizures (FS) who did not have any evidence of structural lesions suggesting secondary epilepsy. 66 individuals had positive family history of TLE epilepsy and 54 were sporadic. Each patient was genotyped for the presence of G1465A polymorphism. All exons of the GABBR1 gene were screened by single strand confirmation polymorphism method. Genotypes were compared with two independent matched control groups. RESULTS: We detected two A alleles of the G1465A polymorphism in one homozygous control subject (0.87% of all alleles) and one A allele in a patient with TLE (0.45%, not significant). Other detected polymorphisms in coding regions had similar frequencies in epilepsy patients and control groups. No disease causing mutations in the GABBR1 gene were detected in patients with sporadic or familial TLE. CONCLUSION: Our results indicate that TLE preceded by FS is not associated with the polymorphisms or mutations in the GABBR1 gene, including the G1465A polymorphism. The proportion of TLE patients with FS in the original study, reporting this positive association, did not differ between allele A negative and positive cases. Thus, our failure to reproduce this result is likely applicable to all non-lesional TLE epilepsies

    Reproductive biology of the pampas deer (Ozotoceros bezoarticus): a review

    Get PDF
    The pampas deer (Ozotoceros bezoarticus) is a South American grazing deer which is in extreme danger of extinction. Very little is known about the biology of the pampas deer. Moreover, most information has not been published in peer-reviewed scientific journals, and is only available in local publications, theses, etc. Therefore, our aim was to update and summarize the available information regarding the reproductive biology of the pampas deer. Moreover, in most sections, we have also included new, unpublished information. Detailed descriptions are provided of the anatomy of both the female and the male reproductive tract, puberty onset, the oestrous cycle and gestational length. Birthing and the early postpartum period are described, as are maternal behaviour and early fawn development, seasonal distribution of births, seasonal changes in male reproduction and antler cycle, reproductive behaviour, semen collection, and cryopreservation. Finally, an overview is given and future directions of research are proposed

    The spotted gar genome illuminates vertebrate evolution and facilitates human-teleost comparisons

    Get PDF
    To connect human biology to fish biomedical models, we sequenced the genome of spotted gar (Lepisosteus oculatus), whose lineage diverged from teleosts before teleost genome duplication (TGD). The slowly evolving gar genome has conserved in content and size many entire chromosomes from bony vertebrate ancestors. Gar bridges teleosts to tetrapods by illuminating the evolution of immunity, mineralization and development (mediated, for example, by Hox, ParaHox and microRNA genes). Numerous conserved noncoding elements (CNEs; often cis regulatory) undetectable in direct human-teleost comparisons become apparent using gar: functional studies uncovered conserved roles for such cryptic CNEs, facilitating annotation of sequences identified in human genome-wide association studies. Transcriptomic analyses showed that the sums of expression domains and expression levels for duplicated teleost genes often approximate the patterns and levels of expression for gar genes, consistent with subfunctionalization. The gar genome provides a resource for understanding evolution after genome duplication, the origin of vertebrate genomes and the function of human regulatory sequences

    Recent developments in the genetics of childhood epileptic encephalopathies: impact in clinical practice

    Full text link

    Geographic differentiation of tropical Australian penaeid prawn populations

    No full text

    Geographic differentiation of eastern Australian penaeid prawn populations

    No full text
    corecore