62 research outputs found
Ethnic Variation in Inflammatory Profile in Tuberculosis
PMCID: PMC3701709This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited
Genome-wide association study of survival from sepsis due to pneumonia: an observational cohort study
BACKGROUND: Sepsis continues to be a major cause of death, disability, and health-care expenditure worldwide. Despite evidence suggesting that host genetics can influence sepsis outcomes, no specific loci have yet been convincingly replicated. The aim of this study was to identify genetic variants that influence sepsis survival. METHODS: We did a genome-wide association study in three independent cohorts of white adult patients admitted to intensive care units with sepsis, severe sepsis, or septic shock (as defined by the International Consensus Criteria) due to pneumonia or intra-abdominal infection (cohorts 1-3, n=2534 patients). The primary outcome was 28 day survival. Results for the cohort of patients with sepsis due to pneumonia were combined in a meta-analysis of 1553 patients from all three cohorts, of whom 359 died within 28 days of admission to the intensive-care unit. The most significantly associated single nucleotide polymorphisms (SNPs) were genotyped in a further 538 white patients with sepsis due to pneumonia (cohort 4), of whom 106 died. FINDINGS: In the genome-wide meta-analysis of three independent pneumonia cohorts (cohorts 1-3), common variants in the FER gene were strongly associated with survival (p=9·7 × 10(-8)). Further genotyping of the top associated SNP (rs4957796) in the additional cohort (cohort 4) resulted in a combined p value of 5·6 × 10(-8) (odds ratio 0·56, 95% CI 0·45-0·69). In a time-to-event analysis, each allele reduced the mortality over 28 days by 44% (hazard ratio for death 0·56, 95% CI 0·45-0·69; likelihood ratio test p=3·4 × 10(-9), after adjustment for age and stratification by cohort). Mortality was 9·5% in patients carrying the CC genotype, 15·2% in those carrying the TC genotype, and 25·3% in those carrying the TT genotype. No significant genetic associations were identified when patients with sepsis due to pneumonia and intra-abdominal infection were combined. INTERPRETATION: We have identified common variants in the FER gene that associate with a reduced risk of death from sepsis due to pneumonia. The FER gene and associated molecular pathways are potential novel targets for therapy or prevention and candidates for the development of biomarkers for risk stratification. FUNDING: European Commission and the Wellcome Trust
The possible role of chromosome X variability in hypertensive familiarity
Familiarity participates in the pathogenesis of hypertension, although only recently, whole genome studies have proposed regions of the human genome possibly involved in the transmission of the hypertensive phenotype. Although studies have mainly focused on autosome, hitherto the influence of sex on familial transmission of hypertension has not been considered. We analysed the database of the Campania Salute Network of Hypertension center of the Federico II University Hospital of Naples (Italy), using dichotomous variables for paternal and maternal familiarity and gender (male and female) of 12 504 hypertensive patients (6868 males and 5636 females) and 6352 controls (3484 males and 2868 females), totaling 18 856 subjects. In the hypertensive group, familiarity was present in 75% of cases with odds of 3.77 and in only 26% of the normotensives with odds of 0.94. The odds ratio (OR) indicated that familiarity increases the risk of developing hypertension by 2.91 (95% confidence interval (CI)=2.67–3.17, P<0.001) times. Additionally, maternal familiarity was 37% (OR=3.01, 95% CI=2.66–3.41, P<0.001), paternal familiarity was 21% (OR=2.31, 95% CI=2.01–2.68, P<0.001) and the double familiarity was 17% (OR=3.45, 95% CI=2.87–4.01, P<0.001), thus suggesting a plausible association between maternal familiarity and development of hypertension; this finding was observed both in male and in female patients, although the phenomenon was larger in males. Given the dominance of maternal transmission in males, by genome-wide analysis of the X chromosome, we found two regions that were differently distributed in male hypertensives with maternal hypertension. Our data highlight the importance of genetic variants in the X chromosome to the maternal transmission of the hypertensive phenotype
Strengthening field-based training in low and middle-income countries to build public health capacity: Lessons from Australia's Master of Applied Epidemiology program
BACKGROUND:
The International Health Regulations (2005) and the emergence and global spread of infectious diseases have triggered a re-assessment of how rich countries should support capacity development for communicable disease control in low and medium income countries (LMIC). In LMIC, three types of public health training have been tried: the university-based model; streamed training for specialised workers; and field-based programs. The first has low rates of production and teaching may not always be based on the needs and priorities of the host country. The second model is efficient, but does not accord the workers sufficient status to enable them to impact on policy. The third has the most potential as a capacity development measure for LMIC, but in practice faces challenges which may limit its ability to promote capacity development.
DISCUSSION:
We describe Australia's first Master of Applied Epidemiology (MAE) model (established in 1991), which uses field-based training to strengthen the control of communicable diseases. A central attribute of this model is the way it partners and complements health department initiatives to enhance workforce skills, health system performance and the evidence-base for policies, programs and practice.
SUMMARY:
The MAE experience throws light on ways Australia could collaborate in regional capacity development initiatives. Key needs are a shared vision for a regional approach to integrate training with initiatives that strengthen service and research, and the pooling of human, financial and technical resources. We focus on communicable diseases, but our findings and recommendations are generalisable to other areas of public health
Plio-Pleistocene climatic change had a major impact on the assembly and disassembly processes of Iberian rodent communities
Comprehension of changes in community composition through multiple spatio-temporal scales is a prime challenge in ecology and palaeobiology. However, assembly, structuring and disassembly of biotic metacommunities in deep-time is insufficiently known. To address this, we used the extensively sampled Iberian Plio-Pleistocene fossil record of rodent faunas as our model system to explore how global climatic events may alter metacommunity structure. Through factor analysis, we found five sets of genera, called faunal components, which co-vary in proportional diversity over time. These faunal components had different spatio-temporal distributions throughout the Plio-Pleistocene, resulting in non-random changes in species assemblages, particularly in response to the development of the Pleistocene glaciations. Three successive metacommunities with distinctive taxonomic structures were identified as a consequence of the differential responses of their members to global climatic change: (1) Ruscinian subtropical faunas (5.3–3.4 Ma) dominated by a faunal component that can be considered as a Miocene legacy; (2) transition faunas during the Villafranchian–Biharian (3.4–0.8 Ma) with a mixture of different faunal components; and (3) final dominance of the temperate Toringian faunas (0.8–0.01 Ma) that would lead to the modern Iberian assemblage. The influence of the cooling global temperature drove the reorganisation of these rodent metacommunities. Selective extinction processes due to this large-scale environmental disturbance progressively eliminated the subtropical specialist species from the early Pliocene metacommunity. This disassembly process was accompanied by the organisation of a diversified metacommunity with an increased importance of biome generalist species, and finally followed by the assembly during the middle–late Pleistocene of a new set of species specialised in the novel environments developed as a consequence of the glaciations
The European Solar Telescope
The European Solar Telescope (EST) is a project aimed at studying the magnetic connectivity of the solar atmosphere, from the deep photosphere to the upper chromosphere. Its design combines the knowledge and expertise gathered by the European solar physics community during the construction and operation of state-of-the-art solar telescopes operating in visible and near-infrared wavelengths: the Swedish 1m Solar Telescope, the German Vacuum Tower Telescope and GREGOR, the French Télescope Héliographique pour l’Étude du Magnétisme et des Instabilités Solaires, and the Dutch Open Telescope. With its 4.2 m primary mirror and an open configuration, EST will become the most powerful European ground-based facility to study the Sun in the coming decades in the visible and near-infrared bands. EST uses the most innovative technological advances: the first adaptive secondary mirror ever used in a solar telescope, a complex multi-conjugate adaptive optics with deformable mirrors that form part of the optical design in a natural way, a polarimetrically compensated telescope design that eliminates the complex temporal variation and wavelength dependence of the telescope Mueller matrix, and an instrument suite containing several (etalon-based) tunable imaging spectropolarimeters and several integral field unit spectropolarimeters. This publication summarises some fundamental science questions that can be addressed with the telescope, together with a complete description of its major subsystems
- …