6,954 research outputs found

    Hex is a transcriptional repressor that contributes to anterior identity and suppresses Spemann organiser function

    Get PDF
    One of the earliest markers of anterior asymmetry in vertebrate embryos is the transcription factor Hex. We find that Hex is a transcriptional repressor that can be converted to an activator by fusing full length Hex to two copies of the minimal transcriptional activation domain of VP16 together with the flexible hinge region of the (lambda) repressor (Hex-(lambda)VP2). Retention of the entire Hex open reading frame allows one to examine Hex function without disrupting potential protein-protein interactions. Expression of Hex-(lambda)VP2 in Xenopus inhibits expression of the anterior marker Cerberus and results in anterior truncations. Such embryos have multiple notochords and disorganised muscle tissue. These effects can occur in a cell non-autonomous manner, suggesting that one role of wild-type Hex is to specify anterior structures by suppressing signals that promote dorsal mesoderm formation. In support of this idea, over-expression of wild-type Hex causes cell non-autonomous dorso-anteriorization, as well as cell autonomous suppression of dorsal mesoderm. Suppression of dorsal mesoderm by Hex is accompanied by the down-regulation of Goosecoid and Chordin, while induction of dorsal mesoderm by Hex-(lambda)VP2 results in activation of these genes. Transient transfection experiments in ES cells suggest that Goosecoid is a direct target of Hex. Together, our results support a model in which Hex suppresses organiser activity and defines anterior identity

    Damage function for historic paper. Part I: Fitness for use

    Get PDF
    Background In heritage science literature and in preventive conservation practice, damage functions are used to model material behaviour and specifically damage (unacceptable change), as a result of the presence of a stressor over time. For such functions to be of use in the context of collection management, it is important to define a range of parameters, such as who the stakeholders are (e.g. the public, curators, researchers), the mode of use (e.g. display, storage, manual handling), the long-term planning horizon (i.e. when in the future it is deemed acceptable for an item to become damaged or unfit for use), and what the threshold of damage is, i.e. extent of physical change assessed as damage. Results In this paper, we explore the threshold of fitness for use for archival and library paper documents used for display or reading in the context of access in reading rooms by the general public. Change is considered in the context of discolouration and mechanical deterioration such as tears and missing pieces: forms of physical deterioration that accumulate with time in libraries and archives. We also explore whether the threshold fitness for use is defined differently for objects perceived to be of different value, and for different modes of use. The data were collected in a series of fitness-for-use workshops carried out with readers/visitors in heritage institutions using principles of Design of Experiments. Conclusions The results show that when no particular value is pre-assigned to an archival or library document, missing pieces influenced readers/visitors’ subjective judgements of fitness-for-use to a greater extent than did discolouration and tears (which had little or no influence). This finding was most apparent in the display context in comparison to the reading room context. The finding also best applied when readers/visitors were not given a value scenario (in comparison to when they were asked to think about the document having personal or historic value). It can be estimated that, in general, items become unfit when text is evidently missing. However, if the visitor/reader is prompted to think of a document in terms of its historic value, then change in a document has little impact on fitness for use

    Three-dimensional femtosecond laser nanolithography of crystals

    Get PDF
    Nanostructuring hard optical crystals has so far been exclusively feasible at their surface, as stress induced crack formation and propagation has rendered high precision volume processes ineffective. We show that the inner chemical etching reactivity of a crystal can be enhanced at the nanoscale by more than five orders of magnitude by means of direct laser writing. The process allows to produce cm-scale arbitrary three-dimensional nanostructures with 100 nm feature sizes inside large crystals in absence of brittle fracture. To showcase the unique potential of the technique, we fabricate photonic structures such as sub-wavelength diffraction gratings and nanostructured optical waveguides capable of sustaining sub-wavelength propagating modes inside yttrium aluminum garnet crystals. This technique could enable the transfer of concepts from nanophotonics to the fields of solid state lasers and crystal optics.Comment: Submitted Manuscript and Supplementary Informatio

    A mathematical model for breath gas analysis of volatile organic compounds with special emphasis on acetone

    Full text link
    Recommended standardized procedures for determining exhaled lower respiratory nitric oxide and nasal nitric oxide have been developed by task forces of the European Respiratory Society and the American Thoracic Society. These recommendations have paved the way for the measurement of nitric oxide to become a diagnostic tool for specific clinical applications. It would be desirable to develop similar guidelines for the sampling of other trace gases in exhaled breath, especially volatile organic compounds (VOCs) which reflect ongoing metabolism. The concentrations of water-soluble, blood-borne substances in exhaled breath are influenced by: (i) breathing patterns affecting gas exchange in the conducting airways; (ii) the concentrations in the tracheo-bronchial lining fluid; (iii) the alveolar and systemic concentrations of the compound. The classical Farhi equation takes only the alveolar concentrations into account. Real-time measurements of acetone in end-tidal breath under an ergometer challenge show characteristics which cannot be explained within the Farhi setting. Here we develop a compartment model that reliably captures these profiles and is capable of relating breath to the systemic concentrations of acetone. By comparison with experimental data it is inferred that the major part of variability in breath acetone concentrations (e.g., in response to moderate exercise or altered breathing patterns) can be attributed to airway gas exchange, with minimal changes of the underlying blood and tissue concentrations. Moreover, it is deduced that measured end-tidal breath concentrations of acetone determined during resting conditions and free breathing will be rather poor indicators for endogenous levels. Particularly, the current formulation includes the classical Farhi and the Scheid series inhomogeneity model as special limiting cases.Comment: 38 page

    Transmissibility of pandemic H1N1 and genetically related swine influenza viruses in ferrets

    Get PDF
    Poster presentationlink_to_OA_fulltextAnnual Scientific Meeting of the Institut Pasteur International Network, Hong Kong, 22–23 November 2010. In BMC Proceedings, 2011, v. 5, suppl. 1, p. 1

    Eta Carinae and the Luminous Blue Variables

    Full text link
    We evaluate the place of Eta Carinae amongst the class of luminous blue variables (LBVs) and show that the LBV phenomenon is not restricted to extremely luminous objects like Eta Car, but extends luminosities as low as log(L/Lsun) = 5.4 - corresponding to initial masses ~25 Msun, and final masses as low as ~10-15 Msun. We present a census of S Doradus variability, and discuss basic LBV properties, their mass-loss behaviour, and whether at maximum light they form pseudo-photospheres. We argue that those objects that exhibit giant Eta Car-type eruptions are most likely related to the more common type of S Doradus variability. Alternative atmospheric models as well as sub-photospheric models for the instability are presented, but the true nature of the LBV phenomenon remains as yet elusive. We end with a discussion on the evolutionary status of LBVs - highlighting recent indications that some LBVs may be in a direct pre-supernova state, in contradiction to the standard paradigm for massive star evolution.Comment: 27 pages, 6 figures, Review Chapter in "Eta Carinae and the supernova imposters" (eds R. Humphreys and K. Davidson) new version submitted to Springe

    Atomic excitation during recollision-free ultrafast multi-electron tunnel ionization

    Full text link
    Modern intense ultrafast pulsed lasers generate an electric field of sufficient strength to permit tunnel ionization of the valence electrons in atoms. This process is usually treated as a rapid succession of isolated events, in which the states of the remaining electrons are neglected. Such electronic interactions are predicted to be weak, the exception being recollision excitation and ionization caused by linearly-polarized radiation. In contrast, it has recently been suggested that intense field ionization may be accompanied by a two-stage `shake-up' reaction. Here we report a unique combination of experimental techniques that enables us to accurately measure the tunnel ionization probability for argon exposed to 50 femtosecond laser pulses. Most significantly for the current study, this measurement is independent of the optical focal geometry, equivalent to a homogenous electric field. Furthermore, circularly-polarized radiation negates recollision. The present measurements indicate that tunnel ionization results in simultaneous excitation of one or more remaining electrons through shake-up. From an atomic physics standpoint, it may be possible to induce ionization from specific states, and will influence the development of coherent attosecond XUV radiation sources. Such pulses have vital scientific and economic potential in areas such as high-resolution imaging of in-vivo cells and nanoscale XUV lithography.Comment: 17 pages, 4 figures, original format as accepted by Nature Physic

    Molecular diversity of anthracnose pathogen populations associated with UK strawberry production suggests multiple introductions of three different Colletotrichum species.

    Get PDF
    Fragaria × ananassa (common name: strawberry) is a globally cultivated hybrid species belonging to Rosaceae family. Colletotrichum acutatum sensu lato (s.l.) is considered to be the second most economically important pathogen worldwide affecting strawberries. A collection of 148 Colletotrichum spp. isolates including 67 C. acutatum s.l. isolates associated with the phytosanitary history of UK strawberry production were used to characterize multi-locus genetic variation of this pathogen in the UK, relative to additional reference isolates that represent a worldwide sampling of the diversity of the fungus. The evidence indicates that three different species C. nymphaeae, C. godetiae and C. fioriniae are associated with strawberry production in the UK, which correspond to previously designated genetic groups A2, A4 and A3, respectively. Among these species, 12 distinct haplotypes were identified suggesting multiple introductions into the country. A subset of isolates was also used to compare aggressiveness in causing disease on strawberry plants and fruits. Isolates belonging to C. nymphaeae, C. godetiae and C. fioriniae representative of the UK anthracnose pathogen populations showed variation in their aggressiveness. Among the three species, C. nymphaeae and C. fioriniae appeared to be more aggressive compared to C. godetiae. This study highlights the genetic and pathogenic heterogeneity of the C. acutatum s.l. populations introduced into the UK linked to strawberry production
    corecore