4,916 research outputs found
Superconductivity of ultra-fine tungsten nanowires grown by focused-ion-beam direct-writing
The electrical properties of lateral ultra-fine tungsten nanowires, which were grown by focused-ion-beam-induced deposition with 1 pA ion-beam current, were investigated. Temperature-dependent electrical measurements show that the wires are conducting and have a superconducting transition with a transition temperature (T-c) about 5.1 K. Resistance vs. temperature measurements reveal that, with decreasing cross-sectional area, the wires display an increasingly broad superconducting transition. A residual resistive tail extending down to the low-temperature region is found only for the thinnest tungsten nanowire, which is 10 nm thick and 19 nm wide. The logarithm of the residual resistance of this wire appears as two linear sections as a function of temperature, one within 300 mK below T-c and the other extending down to the lowest measuring temperature of 4.26 K. Such features have previously been identified with phase slip processes. Our results are suggestive that the focused-ion-beam technique might be a potential approach to fabricate ultra-thin and ultra-narrow nanowires for the study of superconducting suppression in nanoscale materials and for maskless superconducting device fabrication. (C) 2011 Elsevier B.V. All rights reserved
Mutational analysis of DAX1 in patients with hypogonadotropic hypogonadism or pubertal delay
Although delayed puberty is relatively common and often familial, its molecular and pathophysiologic basis is poorly understood. In contrast, the molecular mechanisms underlying some forms of hypogonadotropic hypogonadism (HH) are clearer, following the description of mutations in the genes KAL, GNRHR, and PROP1. Mutations in another gene, DAX1 (AHC), cause X-linked adrenal hypoplasia congenita and HH. Affected boys usually present with primary adrenal failure in infancy or childhood and HH at the expected time of puberty.DAX1 mutations have also been reported to occur with a wider spectrum of clinical presentations. These cases include female carriers of DAX1 mutations with marked pubertal delay and a male with incomplete BH and mild adrenal insufficiency in adulthood. Given this emerging phenotypic spectrum of clinical presentation in men and women with DAX1 mutations, we hypothesized that DAX1 might be a candidate gene for mutation in patients with idiopathic sporadic or familial HH or constitutional delay of puberty. Direct sequencing of DAX1 was performed in 106 patients, including 85 (80 men and 5 women) with sporadic HH or constitutional delay of puberty and patients from 21 kindreds with familial forms of these disorders. No DAX1 mutations were found in these groups of patients, although silent single nucleotide polymorphisms were identified (T114C, G498A). This study suggests that mutations in DAX1 are unlikely to be a common cause of HH or pubertal delay in the absence of a concomitant history of adrenal insufficiency
Correlation between nucleotide composition and folding energy of coding sequences with special attention to wobble bases
Background: The secondary structure and complexity of mRNA influences its
accessibility to regulatory molecules (proteins, micro-RNAs), its stability and
its level of expression. The mobile elements of the RNA sequence, the wobble
bases, are expected to regulate the formation of structures encompassing coding
sequences.
Results: The sequence/folding energy (FE) relationship was studied by
statistical, bioinformatic methods in 90 CDS containing 26,370 codons. I found
that the FE (dG) associated with coding sequences is significant and negative
(407 kcal/1000 bases, mean +/- S.E.M.) indicating that these sequences are able
to form structures. However, the FE has only a small free component, less than
10% of the total. The contribution of the 1st and 3rd codon bases to the FE is
larger than the contribution of the 2nd (central) bases. It is possible to
achieve a ~ 4-fold change in FE by altering the wobble bases in synonymous
codons. The sequence/FE relationship can be described with a simple algorithm,
and the total FE can be predicted solely from the sequence composition of the
nucleic acid. The contributions of different synonymous codons to the FE are
additive and one codon cannot replace another. The accumulated contributions of
synonymous codons of an amino acid to the total folding energy of an mRNA is
strongly correlated to the relative amount of that amino acid in the translated
protein.
Conclusion: Synonymous codons are not interchangable with regard to their
role in determining the mRNA FE and the relative amounts of amino acids in the
translated protein, even if they are indistinguishable in respect of amino acid
coding.Comment: 14 pages including 6 figures and 1 tabl
Ion-beam-induced bending of freestanding amorphous nanowires: The importance of the substrate material and charging
Ion-beam irradiation offers great flexibility and controllability in the construction of
freestanding nanostructures with multiple advanced functionalities. Here, we present and discuss
the bending of free-standing nanowires, against, towards, and ultimately parallel to a flux of
directional ion irradiation. Bending components both along and perpendicular to the incident ion
beam were observed, and the bending behavior was found to depend both on the ion beam
scanning strategy and on the conductivity of the supporting substrate. This behavior is explained
by an ion-irradiation-related electrostatic interaction. Our findings suggest the prospect of exploiting
this technique to engineer 3D nanostructures for advanced applications
Effect of dietary omega-3 fatty acids on castrate-resistant prostate cancer and tumor-associated macrophages.
BackgroundM2-like macrophages are associated with the pathogenesis of castrate-resistant prostate cancer (CRPC). We sought to determine if dietary omega-3 fatty acids (ω-3 FAs) delay the development and progression of CRPC and inhibit tumor-associated M2-like macrophages.MethodsMycCap cells were grown subcutaneously in immunocompetent FVB mice. Mice were castrated when tumors reached 300 mm2. To study effects of dietary ω-3 FAs on development of CRPC, ω-3 or ω-6 diets were started 2 days after castration and mice sacrificed after early regrowth of tumors. To study ω-3 FA effects on progression of CRPC, tumors were allowed to regrow after castration before starting the diets. M2 (CD206+) macrophages were isolated from allografts to examine ω-3 FA effects on macrophage function. Omega-3 fatty acid effects on androgen-deprived RAW264.7 M2 macrophages were studied by RT-qPCR and a migration/ invasion assay.ResultsThe ω-3 diet combined with castration lead to greater MycCap tumor regression (tumor volume reduction: 182.2 ± 33.6 mm3) than the ω-6 diet (tumor volume reduction: 148.3 ± 35.2; p = 0.003) and significantly delayed the time to CRPC (p = 0.006). Likewise, the ω-3 diet significantly delayed progression of established castrate-resistant MycCaP tumors (p = 0.003). The ω-3 diet (as compared to the ω-6 diet) significantly reduced tumor-associated M2-like macrophage expression of CSF-1R in the CRPC development model, and matrix metallopeptidase-9 (MMP-9) and vascular endothelial growth factor (VEGF) in the CRPC progression model. Migration of androgen-depleted RAW264.7 M2 macrophages towards MycCaP cells was reversed by addition of docosahexaenoic acid (ω-3).ConclusionsDietary omega-3 FAs (as compared to omega-6 FAs) decreased the development and progression of CRPC in an immunocompetent mouse model, and had inhibitory effects on M2-like macrophage function. Clinical trials are warranted evaluating if a fish oil-based diet can delay the time to castration resistance in men on androgen deprivation therapy, whereas further preclinical studies are warranted evaluating fish oil for more advanced CRPC
Topological Analysis of Metabolic Networks Integrating Co-Segregating Transcriptomes and Metabolomes in Type 2 Diabetic Rat Congenic Series
Background: The genetic regulation of metabolic phenotypes (i.e., metabotypes) in type 2 diabetes mellitus is caused by complex organ-specific cellular mechanisms contributing to impaired insulin secretion and insulin resistance. Methods: We used systematic metabotyping by 1H NMR spectroscopy and genome-wide gene expression in white adipose tissue to map molecular phenotypes to genomic blocks associated with obesity and insulin secretion in a series of rat congenic strains derived from spontaneously diabetic Goto-Kakizaki (GK) and normoglycemic Brown-Norway (BN) rats. We implemented a network biology strategy approach to visualise shortest paths between metabolites and genes significantly associated with each genomic block. Results: Despite strong genomic similarities (95-99%) among congenics, each strain exhibited specific patterns of gene expression and metabotypes, reflecting metabolic consequences of series of linked genetic polymorphisms in the congenic intervals. We subsequently used the congenic panel to map quantitative trait loci underlying specific metabotypes (mQTL) and genome-wide expression traits (eQTL). Variation in key metabolites like glucose, succinate, lactate or 3-hydroxybutyrate, and second messenger precursors like inositol was associated with several independent genomic intervals, indicating functional redundancy in these regions. To navigate through the complexity of these association networks we mapped candidate genes and metabolites onto metabolic pathways and implemented a shortest path strategy to highlight potential mechanistic links between metabolites and transcripts at colocalized mQTLs and eQTLs. Minimizing shortest path length drove prioritization of biological validations by gene silencing. Conclusions: These results underline the importance of network-based integration of multilevel systems genetics datasets to improve understanding of the genetic architecture of metabotype and transcriptomic regulations and to characterize novel functional roles for genes determining tissue-specific metabolism
Trapped lipopolysaccharide and LptD intermediates reveal lipopolysaccharide translocation steps across the Escherichia coli outer membrane
Lipopolysaccharide (LPS) is a main component of the outer membrane of Gram-negative bacteria, which is essential for the vitality of most Gram-negative bacteria and plays a critical role for drug resistance. LptD/E complex forms a N-terminal LPS transport slide, a hydrophobic intramembrane hole and the hydrophilic channel of the barrel, for LPS transport, lipid A insertion and core oligosaccharide and O-antigen polysaccharide translocation, respectively. However, there is no direct evidence to confirm that LptD/E transports LPS from the periplasm to the external leaflet of the outer membrane. By replacing LptD residues with an unnatural amino acid p-benzoyl-L-phenyalanine (pBPA) and UV-photo-cross-linking in E.coli, the translocon and LPS intermediates were obtained at the N-terminal domain, the intramembrane hole, the lumenal gate, the lumen of LptD channel, and the extracellular loop 1 and 4, providing the first direct evidence and “snapshots” to reveal LPS translocation steps across the outer membrane
High-transition-temperature superconductivity in the absence of the magnetic-resonance mode
The fundamental mechanism that gives rise to high-transition-temperature
(high-Tc) superconductivity in the copper oxide materials has been debated
since the discovery of the phenomenon. Recent work has focussed on a sharp
'kink' in the kinetic energy spectra of the electrons as a possible signature
of the force that creates the superconducting state. The kink has been related
to a magnetic resonance and also to phonons. Here we report that infrared
spectra of Bi2Sr2CaCu2O(8+d), (Bi-2212) show that this sharp feature can be
separated from a broad background and, interestingly, weakens with doping
before disappearing completely at a critical doping level of 0.23 holes per
copper atom. Superconductivity is still strong in terms of the transition
temperature (Tc approx 55 K), so our results rule out both the magnetic
resonance peak and phonons as the principal cause of high-Tc superconductivity.
The broad background, on the other hand, is a universal property of the copper
oxygen plane and a good candidate for the 'glue' that binds the electrons.Comment: 4 pages, 3 figure
Manufacturing with light - micro-assembly of opto-electronic microstructures
Optical micromanipulation allows the movement and patterning of discrete micro-particles within a liquid environment. However, for manufacturing applications it is desirable to remove the liquid, leaving the patterned particles in place. In this work, we have demonstrated the use of optoelectronic tweezers (OET) to manipulate and accurately assemble Sn62Pb36Ag2 solder microspheres into tailored patterns. A technique based on freeze-drying technology was then developed that allows the assembled patterns to be well preserved and fixed in place after the liquid medium in the OET device is removed. After removing the liquid from the OET device and subsequently heating the assembled pattern and melting the solder microspheres, electrical connections between the microspheres were formed, creating a permanent conductive bridge between two isolated metal electrodes. Although this method is demonstrated with 40 µm diameter solder beads arranged with OET, it could be applied to a great range of discrete components from nanowires to optoelectronic devices, thus overcoming one of the basic hurdles in using optical micromanipulation techniques in a manufacturing micro-assembly setting
An activity-based integrated land-use transport model for urban spatial distribution simulation
This research develops an activity-based integrated land use/transport interaction model based on the concepts – activities (mainly, households and employment activities), activity location and relocation for Chinese regions. It consists of a residential and employment location sub-model, a transport sub-model and an implicit real estate rent adjustment sub-model. The model is developed to model the urban activity distribution evolution, predict urban spatial development trends and examine various planning decision implications. It spatially distributes household and employment activity change of a study area by zone based on the current activity distribution, land use policies and the accessibilities of the zones. The model is subsequently calibrated to predict the distribution of households and employment activities in Beijing metropolitan area in 2025. Model results show that the resident and employment densities are still high in central Beijing in 2025, and most zones’ resident densities are higher than their employment densities. However, there is also significant population density increase along the 6th ring road, indicating the relocation trend of the residents and businesses to the outskirts. This is consistent with the government objectives to decentralize activities within the central urban area. The paper also suggests that the model should be used mainly in examining the possible differences arising from the adoption of different policies though predicting future of a city distribution proves feasible
- …