485 research outputs found

    Spectral estimates for saddle point matrices arising in weak constraint four-dimensional variational data assimilation

    Get PDF
    We consider the large-sparse symmetric linear systems of equations that arise in the solution of weak constraint four-dimensional variational data assimilation, a method of high interest for numerical weather prediction. These systems can be written as saddle point systems with a 3×33 \times 3 block structure but block eliminations can be performed to reduce them to saddle point systems with a 2×22 \times 2 block structure, or further to symmetric positive definite systems. In this paper, we analyse how sensitive the spectra of these matrices are to the number of observations of the underlying dynamical system. We also obtain bounds on the eigenvalues of the matrices. Numerical experiments are used to confirm the theoretical analysis and bounds

    Extracellular Matrix Aggregates from Differentiating Embryoid Bodies as a Scaffold to Support ESC Proliferation and Differentiation

    Get PDF
    Embryonic stem cells (ESCs) have emerged as potential cell sources for tissue engineering and regeneration owing to its virtually unlimited replicative capacity and the potential to differentiate into a variety of cell types. Current differentiation strategies primarily involve various growth factor/inducer/repressor concoctions with less emphasis on the substrate. Developing biomaterials to promote stem cell proliferation and differentiation could aid in the realization of this goal. Extracellular matrix (ECM) components are important physiological regulators, and can provide cues to direct ESC expansion and differentiation. ECM undergoes constant remodeling with surrounding cells to accommodate specific developmental event. In this study, using ESC derived aggregates called embryoid bodies (EB) as a model, we characterized the biological nature of ECM in EB after exposure to different treatments: spontaneously differentiated and retinoic acid treated (denoted as SPT and RA, respectively). Next, we extracted this treatment-specific ECM by detergent decellularization methods (Triton X-100, DOC and SDS are compared). The resulting EB ECM scaffolds were seeded with undifferentiated ESCs using a novel cell seeding strategy, and the behavior of ESCs was studied. Our results showed that the optimized protocol efficiently removes cells while retaining crucial ECM and biochemical components. Decellularized ECM from SPT EB gave rise to a more favorable microenvironment for promoting ESC attachment, proliferation, and early differentiation, compared to native EB and decellularized ECM from RA EB. These findings suggest that various treatment conditions allow the formulation of unique ESC-ECM derived scaffolds to enhance ESC bioactivities, including proliferation and differentiation for tissue regeneration applications. © 2013 Goh et al

    Lateral gene transfer between prokaryotes and multicellular eukaryotes: ongoing and significant?

    Get PDF
    The expansion of genome sequencing projects has produced accumulating evidence for lateral transfer of genes between prokaryotic and eukaryotic genomes. However, it remains controversial whether these genes are of functional importance in their recipient host. Nikoh and Nakabachi, in a recent paper in BMC Biology, take a first step and show that two genes of bacterial origin are highly expressed in the pea aphid Acyrthosiphon pisum. Active gene expression of transferred genes is supported by three other recent studies. Future studies should reveal whether functional proteins are produced and whether and how these are targeted to the appropriate compartment. We argue that the transfer of genes between host and symbiont may occasionally be of great evolutionary importance, particularly in the evolution of the symbiotic interaction itself

    PIP5KIβ Selectively Modulates Apical Endocytosis in Polarized Renal Epithelial Cells

    Get PDF
    Localized synthesis of phosphatidylinositol 4,5-bisphosphate [PtdIns(4,5)P2] at clathrin coated pits (CCPs) is crucial for the recruitment of adaptors and other components of the internalization machinery, as well as for regulating actin dynamics during endocytosis. PtdIns(4,5)P2 is synthesized from phosphatidylinositol 4-phosphate by any of three phosphatidylinositol 5-kinase type I (PIP5KI) isoforms (α, β or γ). PIP5KIβ localizes almost exclusively to the apical surface in polarized mouse cortical collecting duct cells, whereas the other isoforms have a less polarized membrane distribution. We therefore investigated the role of PIP5KI isoforms in endocytosis at the apical and basolateral domains. Endocytosis at the apical surface is known to occur more slowly than at the basolateral surface. Apical endocytosis was selectively stimulated by overexpression of PIP5KIβ whereas the other isoforms had no effect on either apical or basolateral internalization. We found no difference in the affinity for PtdIns(4,5)P2-containing liposomes of the PtdIns(4,5)P2 binding domains of epsin and Dab2, consistent with a generic effect of elevated PtdIns(4,5)P2 on apical endocytosis. Additionally, using apical total internal reflection fluorescence imaging and electron microscopy we found that cells overexpressing PIP5KIβ have fewer apical CCPs but more internalized coated structures than control cells, consistent with enhanced maturation of apical CCPs. Together, our results suggest that synthesis of PtdIns(4,5)P2 mediated by PIP5KIβ is rate limiting for apical but not basolateral endocytosis in polarized kidney cells. PtdIns(4,5)P2 may be required to overcome specific structural constraints that limit the efficiency of apical endocytosis. © 2013 Szalinski et al

    Out-of-equilibrium physics in driven dissipative coupled resonator arrays

    Get PDF
    Coupled resonator arrays have been shown to exhibit interesting many- body physics including Mott and Fractional Hall states of photons. One of the main differences between these photonic quantum simulators and their cold atoms coun- terparts is in the dissipative nature of their photonic excitations. The natural equi- librium state is where there are no photons left in the cavity. Pumping the system with external drives is therefore necessary to compensate for the losses and realise non-trivial states. The external driving here can easily be tuned to be incoherent, coherent or fully quantum, opening the road for exploration of many body regimes beyond the reach of other approaches. In this chapter, we review some of the physics arising in driven dissipative coupled resonator arrays including photon fermionisa- tion, crystallisation, as well as photonic quantum Hall physics out of equilibrium. We start by briefly describing possible experimental candidates to realise coupled resonator arrays along with the two theoretical models that capture their physics, the Jaynes-Cummings-Hubbard and Bose-Hubbard Hamiltonians. A brief review of the analytical and sophisticated numerical methods required to tackle these systems is included.Comment: Chapter that appeared in "Quantum Simulations with Photons and Polaritons: Merging Quantum Optics with Condensed Matter Physics" edited by D.G.Angelakis, Quantum Science and Technology Series, Springer 201

    Does the mind map learning strategy facilitate information retrieval and critical thinking in medical students?

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>A learning strategy underutilized in medical education is mind mapping. Mind maps are multi-sensory tools that may help medical students organize, integrate, and retain information. Recent work suggests that using mind mapping as a note-taking strategy facilitates critical thinking. The purpose of this study was to investigate whether a relationship existed between mind mapping and critical thinking, as measured by the Health Sciences Reasoning Test (HSRT), and whether a relationship existed between mind mapping and recall of domain-based information.</p> <p>Methods</p> <p>In this quasi-experimental study, 131 first-year medical students were randomly assigned to a standard note-taking (SNT) group or mind map (MM) group during orientation. Subjects were given a demographic survey and pre-HSRT. They were then given an unfamiliar text passage, a pre-quiz based upon the passage, and a 30-minute break, during which time subjects in the MM group were given a presentation on mind mapping. After the break, subjects were given the same passage and wrote notes based on their group (SNT or MM) assignment. A post-quiz based upon the passage was administered, followed by a post-HSRT. Differences in mean pre- and post-quiz scores between groups were analyzed using independent samples <it>t</it>-tests, whereas differences in mean pre- and post-HSRT total scores and subscores between groups were analyzed using ANOVA. Mind map depth was assessed using the Mind Map Assessment Rubric (MMAR).</p> <p>Results</p> <p>There were no significant differences in mean scores on both the pre- and post-quizzes between note-taking groups. And, no significant differences were found between pre- and post-HSRT mean total scores and subscores.</p> <p>Conclusions</p> <p>Although mind mapping was not found to increase short-term recall of domain-based information or critical thinking compared to SNT, a brief introduction to mind mapping allowed novice MM subjects to perform similarly to SNT subjects. This demonstrates that medical students using mind maps can successfully retrieve information in the short term, and does not put them at a disadvantage compared to SNT students. Future studies should explore longitudinal effects of mind-map proficiency training on both short- and long-term information retrieval and critical thinking.</p

    Restriction of meat, fish, and poultry in omnivores improves mood: A pilot randomized controlled trial

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Omnivorous diets are high in arachidonic acid (AA) compared to vegetarian diets. Research shows that high intakes of AA promote changes in brain that can disturb mood. Omnivores who eat fish regularly increase their intakes of eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), fats that oppose the negative effects of AA in vivo. In a recent cross-sectional study, omnivores reported significantly worse mood than vegetarians despite higher intakes of EPA and DHA. This study investigated the impact of restricting meat, fish, and poultry on mood.</p> <p>Findings</p> <p>Thirty-nine omnivores were randomly assigned to a control group consuming meat, fish, and poultry daily (OMN); a group consuming fish 3-4 times weekly but avoiding meat and poultry (FISH), or a vegetarian group avoiding meat, fish, and poultry (VEG). At baseline and after two weeks, participants completed a food frequency questionnaire, the Profile of Mood States questionnaire and the Depression Anxiety and Stress Scales. After the diet intervention, VEG participants reduced their EPA, DHA, and AA intakes, while FISH participants increased their EPA and DHA intakes. Mood scores were unchanged for OMN or FISH participants, but several mood scores for VEG participants improved significantly after two weeks.</p> <p>Conclusions</p> <p>Restricting meat, fish, and poultry improved some domains of short-term mood state in modern omnivores. To our knowledge, this is the first trial to examine the impact of restricting meat, fish, and poultry on mood state in omnivores.</p

    In situ Biological Dose Mapping Estimates the Radiation Burden Delivered to ‘Spared’ Tissue between Synchrotron X-Ray Microbeam Radiotherapy Tracks

    Get PDF
    Microbeam radiation therapy (MRT) using high doses of synchrotron X-rays can destroy tumours in animal models whilst causing little damage to normal tissues. Determining the spatial distribution of radiation doses delivered during MRT at a microscopic scale is a major challenge. Film and semiconductor dosimetry as well as Monte Carlo methods struggle to provide accurate estimates of dose profiles and peak-to-valley dose ratios at the position of the targeted and traversed tissues whose biological responses determine treatment outcome. The purpose of this study was to utilise γ-H2AX immunostaining as a biodosimetric tool that enables in situ biological dose mapping within an irradiated tissue to provide direct biological evidence for the scale of the radiation burden to ‘spared’ tissue regions between MRT tracks. Γ-H2AX analysis allowed microbeams to be traced and DNA damage foci to be quantified in valleys between beams following MRT treatment of fibroblast cultures and murine skin where foci yields per unit dose were approximately five-fold lower than in fibroblast cultures. Foci levels in cells located in valleys were compared with calibration curves using known broadbeam synchrotron X-ray doses to generate spatial dose profiles and calculate peak-to-valley dose ratios of 30–40 for cell cultures and approximately 60 for murine skin, consistent with the range obtained with conventional dosimetry methods. This biological dose mapping approach could find several applications both in optimising MRT or other radiotherapeutic treatments and in estimating localised doses following accidental radiation exposure using skin punch biopsies

    Interrater reliability of the mind map assessment rubric in a cohort of medical students

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Learning strategies are thinking tools that students can use to actively acquire information. Examples of learning strategies include mnemonics, charts, and maps. One strategy that may help students master the tsunami of information presented in medical school is the mind map learning strategy. Currently, there is no valid and reliable rubric to grade mind maps and this may contribute to their underutilization in medicine. Because concept maps and mind maps engage learners similarly at a metacognitive level, a valid and reliable concept map assessment scoring system was adapted to form the mind map assessment rubric (MMAR). The MMAR can assess mind map depth based upon concept-links, cross-links, hierarchies, examples, pictures, and colors. The purpose of this study was to examine interrater reliability of the MMAR.</p> <p>Methods</p> <p>This exploratory study was conducted at a US medical school as part of a larger investigation on learning strategies. Sixty-six (<it>N </it>= 66) first-year medical students were given a 394-word text passage followed by a 30-minute presentation on mind mapping. After the presentation, subjects were again given the text passage and instructed to create mind maps based upon the passage. The mind maps were collected and independently scored using the MMAR by 3 examiners. Interrater reliability was measured using the intraclass correlation coefficient (<it>ICC</it>) statistic. Statistics were calculated using SPSS version 12.0 (Chicago, IL).</p> <p>Results</p> <p>Analysis of the mind maps revealed the following: concept-links <it>ICC </it>= .05 (95% CI, -.42 to .38), cross-links <it>ICC </it>= .58 (95% CI, .37 to .73), hierarchies <it>ICC </it>= .23 (95% CI, -.15 to .50), examples <it>ICC </it>= .53 (95% CI, .29 to .69), pictures <it>ICC </it>= .86 (95% CI, .79 to .91), colors <it>ICC </it>= .73 (95% CI, .59 to .82), and total score <it>ICC </it>= .86 (95% CI, .79 to .91).</p> <p>Conclusion</p> <p>The high <it>ICC </it>value for total mind map score indicates strong MMAR interrater reliability. Pictures and colors demonstrated moderate to strong interrater reliability. We conclude that the MMAR may be a valid and reliable tool to assess mind maps in medicine. However, further research on the validity and reliability of the MMAR is necessary.</p

    Rasch Analysis of the Upper-Limb Sub-scale of the STREAM Tool in an Acute Stroke Population

    Get PDF
    Background – Stroke is a leading cause of disability worldwide. The most common impairment resulting from stroke is upper limb weakness. Objectives - To determine the usefulness and psychometric validity of the upper limb sub-scale of the STREAM in an acute stroke population. Methods: Rasch Analysis, including unidimensionality assumption testing, determining model fit, and analysis of: reliability, residual correlations, & differential item functioning. Results - 125 individuals were assessed using the upper limb sub-scale of the Stroke Rehabilitation Assessment of Movement (STREAM) tool. Rasch analysis suggests the STREAM is a unidimensional measure. However, when scored using the originally proposed method (0-2), or using the response pattern (0-5) neither variant fit the Rasch model (p < 0.05). Although, the reliability was good (Person-Separation Index – 0.847 & 0.903 respectively). Correcting for the disordered thresholds, and thereby producing the new scoring pattern, led to substantial improvement in the overall fit (chi-square probability of fit - 22%), however, the reliability was slightly reduced (PSI – 0.806). Conclusions - The study proposes a new scoring method for the upper limb sub-scale of the STREAM outcome measure in the acute stroke population.Stroke Associatio
    • …
    corecore