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Out-of-equilibrium physics in driven dissipative
coupled resonator arrays

Changsuk Noh, Stephen R. Clark, Dieter Jaksch and Dimitris G. Angelakis

Abstract Coupled resonator arrays have been shown to exhibit interesting many-
body physics including Mott and Fractional Hall states of photons. One of the main
differences between these photonic quantum simulators and their cold atoms coun-
terparts is in the dissipative nature of their photonic excitations. The natural equi-
librium state is where there are no photons left in the cavity. Pumping the system
with external drives is therefore necessary to compensate for the losses and realise
non-trivial states. The external driving here can easily be tuned to be incoherent,
coherent or fully quantum, opening the road for exploration of many body regimes
beyond the reach of other approaches. In this chapter, we review some of the physics
arising in driven dissipative coupled resonator arrays including photon fermionisa-
tion, crystallisation, as well as photonic quantum Hall physics out of equilibrium.
We start by briefly describing possible experimental candidates to realise coupled
resonator arrays along with the two theoretical models that capture their physics,
the Jaynes-Cummings-Hubbard and Bose-Hubbard Hamiltonians. A brief review of
the analytical and sophisticated numerical methods required to tackle these systems
is included.

Changsuk Noh
Centre for Quantum Technologies, National University of Singapore, 2 Science Drive 3, 117542,
Singapore. e-mail: undefying@gmail.com

Dimitris G. Angelakis
Centre for Quantum Technologies, National University of Singapore, 2 Science Drive 3, 117542,
Singapore & School of Electrical and Computer Engineering, Technical University of Crete, Cha-
nia, Crete, 73100 Greece. e-mail: dimitris.angelakis@gmail.com

Stephen R. Clark
Clarendon Laboratory, University of Oxford, Parks Road, Oxford OX1 3PU, UK & Centre for
Quantum Technologies, National University of Singapore, 2 Science Drive 3, 117542, Singapore

Dieter Jaksch
Clarendon Laboratory, University of Oxford, Parks Road, Oxford OX1 3PU, UK & Centre for
Quantum Technologies, National University of Singapore, 2 Science Drive 3, 117542, Singapore

1

ar
X

iv
:1

70
5.

04
43

9v
1 

 [
qu

an
t-

ph
] 

 1
2 

M
ay

 2
01

7

undefying@gmail.com
dimitris.angelakis@gmail.com


2 C. Noh, S. R. Clark, D. Jaksch, and D. G. Angelakis

1 Introduction

One of the key problems in physics is to understand strongly correlated many-body
systems. Fully solving a many-body Hamiltonian, analytically or numerically, is
however a notoriously difficult problem. An increasingly plausible way around this
issue is to use an experimentally accessible and well-controlled quantum system
(e.g., cold atoms in optical lattices) to simulate the physics of another complex
quantum system (e.g., electrons in a 2D lattice described by the Hubbard model) [1].
While cold atoms [2] and trapped ions [3] arose as strong candidates for quantum
simulators [4, 5] of interacting fermions/bosons and quantum spin systems, respec-
tively, photonic systems based on linear optics and Circuit QED architectures were
also recently proposed as alternative candidates with their own advantages [6, 7].
One prominent example is the simulation of strongly interacting condensed matter
models such as the Bose-Hubbard model [8] in coupled resonator arrays (CRAs)
[7, 9, 10, 11].

The Bose-Hubbard (BH) model is a lattice model for a single bosonic species
with nearest-neighbour hopping and an on-site interaction. In Ref. [8], it was shown
that the competition between the two processes leads to a quantum phase transi-
tion between the superfluid and Mott-insulating phases, which has been demon-
strated experimentally with ultracold atoms in an optical lattice [12, 13]. To re-
alise a photonic superfluid-Mott phase transition in a CRA one needs to build up a
Bose-Hubbard-like Hamiltonian. The hopping between the lattice sites is naturally
provided by an optical coupling between resonators, whereas to realise the on-site
interaction, one has to induce some kind of nonlinearity in each resonator. For this
purpose, an (artificial) atom can be coupled to each resonator, or for the case of
solid-state cavities an intrinsic Kerr-nonlinearity may be considered. In the latter
case, the dynamics of the CRA is governed by the BH model, whereas in the former
case the dynamics depends on the type of the doped atom. When the atom is a two-
level system, for which the coupling to the cavity mode is of the Jaynes-Cummings
type, the resulting CRA is now known as the Jaynes-Cummings-Hubbard (JCH)
system.

Following an initial realisation that photons in CRAs undergo superfluid-Mott
phase transition [14, 15, 16], the equilibrium phases of the JCH model has been
extensively investigated [17] (see also chapters by Schmidt & Blatter and Tomadin
& Fazio). However, for photons it is more natural to consider a driven dissipative
scenario, where photons are continuously pumped into the system to counteract un-
avoidable losses. This has led to the study of CRAs in non-equilibrium driven dis-
sipative regimes, where strongly correlated many-body behaviour can be observed.
The aim of this chapter is to discuss efforts in this direction. We discuss in detail
a few topical examples, mostly on driven dissipative systems, but also on transient
effects in dissipative arrays. We begin by providing a short survey of experimental
platforms that could realise CRAs and then discuss generic models that describe
these systems.



Out-of-equilibrium physics in driven dissipative coupled resonator arrays 3

Candidates for realising CRAs

Photonic crystals are defect semiconductors with holes periodically introduced to
an otherwise uniform substrate. This induces a spatial dependence of refractive in-

Fig. 1 Photonic crystal: (a) Periodic holes are introduced to modulate the refractive index of the
material, giving rise to band gaps in the material. Defect cavities, represented by red circles, intro-
duce isolated photonic states within the band gap. Photons can hop between neighbouring cavities,
as represented by red arrows, due to modal overlap. (b) When a quantum dot is grown inside the
defect cavity, the interaction between the quantised electronic levels of the quantum dot and the
cavity modes can be described by the Jaynes-Cummings model.

dex, and thus gives rise to photonic band gaps within the infra-red to visible range
[18]. A cavity is introduced to the system by creating an isolated photonic mode
within the band gap, for example by removing one or more holes, that are strongly
confined to the photonic crystal plane. Figure 1 illustrates such coupled photonic
crystal cavities. Photon-photon interactions can be induced by growing a semicon-
ductor nanostructure called quantum dot in each cavity. Due to the tight confinement
of electrons in a quantum dot, discrete energy levels form and when one of the tran-
sitions match the cavity frequency the resulting dynamics is well described by the
Jaynes-Cummings Hamiltonian (see Sect. 2 for a quick introduction to the Jaynes-
Cummings model). The advantages of photonics crystal cavities include low photon
losses, and extremely small mode volumes on the order of a cubic wavelength λ 3.

In another promising semiconductor-based platform, a quantum well is sand-
wiched between two Bragg reflectors. The reflectors create an effective cavity, with
a mode that interacts with the exciton in the quantum well. This creates the so-called
exciton-polaritons which inherit nonlinearities from the electron-hole interaction.
The interested reader is referred to chapters [Gerace] and [Kim] for more details on
these devices.

Integrated waveguide arrays are another interesting candidate. In this set-up, the
formation of resonators involve precise etching of concave mirror arrays into silicon
[19] with Bragg-inscribed optical fibres placed above them (see Fig. 2(a) and (b)).
CRAs can be realised by introducing laser-written waveguides in places of optical
fibres [20], such that the photon tunneling is allowed by evanescent coupling be-
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tween the waveguides (see Fig. 2(c)). Phase shifters can then be used to tune the
coupling strength, while the nonlinearity can be introduced by placing an atom on
each concave mirror cavity.

Fig. 2 Integrated optical waveguide: (a) An array of periodic concave mirrors etched into Si can
be fabricated with high-precision [19], while (b) resonators may be formed by the addition of
Bragg-inscribed fibres above them. (c) CRAs are realised by replacing the fibres with waveguides,
inscribed with different refractive indices by a strong UV “writing” laser [20]. Photon tunneling
between neighbouring waveguides/cavities is enhanced by optimising waveguide paths.

Superconducting circuits, our last candidate, is the most promising platform for re-
alising CRAs [7, 21, 22, 23, 24]. They enjoy low photon loss rates due to supercon-
ductivity and good scalability due to highly-accurate fabrication procedures avail-
able. Various circuit designs exist to create an artificial two-level atom, all of which
however share the common feature of exploiting the intrinsic nonlinearity of one
or more Josephson junctions. Such an artificial atom can be coupled to supercon-
ducting transmission line resonators to mimic the Jaynes-Cummings interaction in
cavity QED, as shown in Fig. 3 [25]. The resulting system is often called the circuit
QED (cQED) system in analogy to cavity-QED. A comparison between the various
realisations of CRAs using currently available parameters are summarised in Table
1. Note that a large cooperativity (the ratio between the interaction strength g and
the loss rate γ) is required in most proposals for equilibrium simulations.

Table 1 Comparison of typical CRA parameters for different architectures. Note that the values
quoted for integrated optics platform are not taken from actual experiments, but are realistic pa-
rameters predicted in ref. [26].

Parameter Symbol Photonic crystals Integrated optics Superconducting
Resonance frequency ωc/2π 325 THz 380 THz 10 GHz
JC parameter g/2π , g/ωc 20 GHz 33 MHz 200 MHz
Cavity decay rate γ/2π 1 GHz 10 MHz 100 kHz
Atom decay rate κ/2π 8 GHz 10 MHz 2 kHz
Cooperativity g/γκ 2.5 10 � 1
Resonator coupling J/2π 100 GHz 2 GHz 10 MHz
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Fig. 3 Superconducting circuit QED: (a) A superconducting coplanar waveguide resonator fab-
ricated on a silicon chip using optical lithography. Green tapering structures fanning out to the
edges of the chip are input and output feed lines. The center conductor is separated from the lat-
eral ground planes by a gap as shown in the zoom. (b) Effective 2-level system, a superconducting
qubit, coupled to the coplanar waveguide resonator. A superconducting island connected by a pair
of Josephson junctions to the superconducting reservoir is placed in the gap between the central
conductor and the bottom ground plane. (c) Many stripline resonators fabricated into a JCH system.

2 Modelling CRAs

There are two models often used to describe CRAs, depending on whether the non-
linearity is assumed to be intrinsic to the resonator, or is explicitly introduced by
coupling to each resonator a two-level atom. When losses are neglected, the former
case is described by the BH model (from here on, we assume h̄ = 1)

ĤBH =−J ∑
〈i, j〉

(
â†

i â j +h.c.
)
+

U
2 ∑

i
â†

i â†
i âiâi +ωc ∑

i
â†

i âi, (1)

whereas the latter is described by the JCH model:

ĤJCH =−J ∑
〈i, j〉

(
â†

i â j +h.c.
)
+g∑

i

(
â†

i σ̂
−
i +h.c.

)
+ωc ∑

i

(
â†

i âi + σ̂
+
i σ̂
−
i

)
−∆ ∑

i
σ̂
+
i σ̂
−
i . (2)

Here â is the photon annihilation operator, σ̂− is the atomic lowering operator, J
is the photon hopping rate between neighbouring cavities, U is the intrinsic non-
linearity of the resonator, g is the coupling strength between the resonator and the
two-level system, ωc is the natural frequency of the resonator, and ∆ is the detuning
between the resonator and the two-level system. When J = 0, ĤJCH becomes the
Jaynes-Cummings model, which describes the physics of a two-level atom coupled
to a resonator mode when the coupling strength g is much smaller than the atomic
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and resonator frequencies [27]. The Kerr-nonlinearity in the BH model also comes
from some sort of interaction with matter, but in the regime where only the over-
all effects of the material on the resonator mode are considered. These effects are
usually weak, but can be enhanced in some systems as reviewed in [10].

With losses included, the Hamiltonian description is no longer sufficient. How-
ever, it is possible to model such open systems by coupling the system of interest
to a bath of harmonic oscillators. Assuming weak system-bath coupling and a few
general properties of the bath, one can obtain an equation of motion for the reduced
density matrix of the system alone [27]. The resulting quantum master equation
(QME) can be written as

dρ/dt =−i
[
Ĥα ,ρ

]
+∑

j

γ j

2

(
2â jρ â†

j − â†
j â jρ−ρ â†

j â j

)
, (3)

where ρ is the density operator and α ∈ {JCH,BH}. The second term on the right
hand side is a Lindblad noise term we will call Lloss, which accounts for the dissi-
pation in the cavities where γ j is the loss rate of cavity j. For the JCH systems, an
additional source of dissipation, due to decay of the excited atomic state, can also
be taken into account by adding another Lindblad noise term

Ldecay{ρ}= ∑
j

κ j

2

(
2σ̂
−
j ρσ̂

+
j − σ̂

+
j σ̂
−
j ρ−ρσ̂

+
j σ̂
−
j

)
, (4)

where κ j is the decay rate for the jth two-level atom. To compensate for the losses,
experimentalists usually drive one or more resonators with lasers. Such driving can
be modelled by adding the term

Ĥdrive = ∑
j

Ω j(t)â
†
j +Ω

∗
j (t)â j, (5)

to the Hamiltonian, where Ω j(t) = Ω je−iωLt is the Rabi frequency of the driving
laser. Incoherent driving can also be added in the form of a Lindblad noise operator1.
For example, the cavity array driven by a thermal reservoir field with average photon
number n̄ is described by

dρ/dt = −i
[
Ĥα ,ρ

]
+(n̄+1)∑

j

γ j

2

(
2â jρ â†

j − â†
j â jρ−ρ â†

j â j

)
+n̄∑

j

γ j

2

(
2â†

jρ â j− â jâ
†
jρ−ρ â jâ

†
j

)
. (6)

1 One way to see this is to derive the rate equation for the diagonal density operator elements from
the master equation.
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3 Computing the properties of CRAs

Given the QME description of a CRA, in most cases we will concentrate on the
properties of the non-equilibrium steady state (NESS), found by solving dρ/dt = 0,
in analogy to the ground state properties of the equilibrium systems. We will also
be interested in the transient open system dynamics given the system is prepared
in some initial state. For either task we are faced with integrating the QME for
a BH or JCH system – a technically challenging problem due to the exponential
growth in the Hilbert space dimension with the number of sites (e.g. resonators or
resonator + atoms) considered. Developing numerical algorithms to aid in studying
driven dissipative strongly-correlated many-body quantum systems is one of the
most difficult problems in computational physics. However, the last decade has seen
impressive progress in the development of computational representations of the state
of quantum lattice systems as tensor networks [28, 29, 30], in particular in 1D via
so-called matrix product states (MPS) [31, 32].

The key feature of MPS is that they provide a compact and efficient ansatz for
describing weakly-entangled pure quantum states well suited to open chains of sites
[32]. This has been used with much success to describe the low-lying excited states
and zero-temperature unitary dynamics of cold-atom systems, e.g. the −i [H ′α ,ρ]
term in the QME [33, 34, 35, 36, 37]. These methods have been readily adapted
[38, 39, 40] to describe dissipative systems with Lindblad noise terms which are
local incoherent processes, like Lloss and Ldecay relevant to CRA. This is done
by unravelling the QME into quantum trajectories where many evolutions of pure
states, described by an MPS, are made and stochastically interrupted by quantum
jumps [41, 42, 43, 44, 45]. By averaging over many trajectories then recovers the
properties of the full density matrix ρ [46]. In the Appendix we describe in more
detail this very powerful method.

4 Non-equilibrium many-body phases of photons in CRAs

In this section, we will review in detail a selection of many-body phenomena arising
in non-equilibrium scenarios. To set the background, we start with a comparison
between the physics of JC and Kerr-nonlinear resonator, followed by a description of
strong photon-bunching phenomenon in a driven dissipative two-site (dimer) case.
Next, a transient phenomenon called localisation-delocalisation of photons in a JCH
dimer is presented, which shows a nice example of how CRAs are implemented in
a circuit-QED platform. Continuing our review with driven dissipative phenomena,
we discuss fermionisation and crystallisation of photons in 1D CRAs as well as the
NESS phases and quantum Hall-like physics in 2D arrays. Last subsection provides
a brief survey of other interesting driven dissipative studies that we do not have
enough space to cover in detail.
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4.1 Jaynes-Cummings vs Kerr-nonlinear resonator

In the limit of zero atom-photon detuning, the eigenstates of the Jaynes-Cummings
Hamiltonian, i.e., the J = 0 and ∆ = 0 case of (2), are the polariton (dressed photon-
atom) states |m,±〉 = 1√

2
(|G,m〉± |E,m−1〉) having eigenenergies Em± = ωcm±

g
√

m (see Fig. 4(a)). Here, G and E refer to the ground and excited states of the
atom, while m is the number of photons in the resonator. Imagine driving the lowest
‘− polariton’ branch |1,−〉 by setting ωL = ωc − g. Because of the nonlinearity
induced by the atom, the transition to the excited state |2,−〉 is detuned by the
amount E2−−2E1−= g(2−

√
2). Compare this to the single-site BH system–a Kerr-

nonlinear resonator–where the detuning is simply U as depicted in Fig. 4(b). When
photons are restricted to the lowest manifolds, we may therefore take the effective
on-site interaction strength of the JC system as Ue f f = g(2−

√
2) for zero atom-

photon detuning. For non-zero detuning the expression becomes

Ue f f

g
=

∆

2g
+2

√(
∆

2g

)2

+1−

√(
∆

2g

)2

+2. (7)

Fig. 4 Low-lying eigenstates of the (a) Jaynes-Cumming model and the (b) Bose-Hubbard model.
Effective photon-photon interaction is provided by the anharmonicity in the spectrum of a given
polariton branch. Taken from Grujic et al. [47].

The ‘repulsion’ between photons induced by the nonlinearity can be quantified
by the (equal-time) second-order intensity correlation function

g(2) = 〈â†â†ââ〉/〈â†â〉2, (8)

as shown in Fig. 5. Note the dips in g(2) when the laser field (with laser-cavity de-
tuning ∆c = ωL−ωc) is resonant with the eigenstates of each model. In particular,
the dip is most prominent and falls below 1 when the lowest excited state is driven
(the situation depicted in Fig. 4), signifying that the presence of a photon in a res-
onator prevents another one from entering the it. This phenomenon is called photon-
blockade or photon anti-bunching. Stronger the repulsion, stronger the blockade or
anti-bunching effect, i.e., g→ 0.
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Despite this similarity between the JC and Kerr resonators, there are qualitative
differences which become important when modelling CRAs as first investigated
by Grujic et al. [47]. Let we look at the single resonator case for simplicity. First,
broad similarities between the two models are apparent upon comparing the left
wing of Fig. 5(a) (corresponding to the lower (−) polariton branch) to Fig. 5(b):
there are peaks at the eigen-modes of the resonators accompanied by the dips in
g(2). However, the JC model displays richer structure, as indicated by the presence
of two symmetric wings (corresponding to the two species of polaritons) and shift
in the lowest excitation state with respect to the linear case (due to the atom-photon
interaction).

It is then natural to ask if the two models can be made equivalent at all, so that
the physics of the JC resonator can be described by an effective Kerr model. Indeed
this is possible as shown in Fig. 5(c). To achieve good agreement, one needs to
take the photonic limit of the JC model in which the photonic component of the
polaritons are dominant. For the − polaritons this requires setting a large negative
detuning ∆ �−g. However, this means reduced effective atom-photon interaction
and g must be increased in order to compensate for it . In Fig. 5(c), g/γ ≈ 1.6×104

was required to achieve good agreement for ∆/g =−10.

Fig. 5 Steady state values of photonic/atomic population (blue solid/red dashed curves) and
the second-order intensity correlation function g(2) (green dot-dashed curve) as functions of the
driving laser-cavity detuning. (a) Jaynes-Cummings resonator with zero atom-photon detuning.
The Lorentzian profile of the empty driven dissipative resonator is shown for comparison (blue
dashed curve). (b) Kerr-nonlinear resonator. Vertical dashed lines mark expected resonances in
each model, corresponding to the labeled states. Parameters are: Ω/γ = 2, g/γ = 20 (JC), and
U/γ ≈ 11.7 (Kerr, as calculated from Eq. (7)). (c) Comparison of the steady-state photon num-
bers for a Kerr resonator with parameters as used in (b) and a JC resonator with ∆/g = −10 and
g/γ ≈ 1.6×104. Taken from Grujic et al. [47].

The above example shows that the JC and Kerr resonators are qualitatively dif-
ferent systems unless care is taken to ensure that they are in the right parameter
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regimes. The same conclusion holds for an array of resonators, meaning that, within
realistic regimes of interactions, a phenomenon found in one type of array is not
guaranteed to be reproduced in another. This provides flexibility in choosing CRAs
and enriches physics that can be found in them. Later in this section, we will see
further examples that highlight the similarities and differences between the two sys-
tems.

4.2 Photon super-bunching

Let us start with the simplest system of 2 coupled Kerr-nonlinear cavities and inves-
tigate the effects of an interplay between the hopping and on-site interaction. Here
we focus on the small-sized equivalent of the ‘Mott’ state, meaning that the driving
field will be set on two-photon resonance with the lowest-energy eigenstate in the
two-photon manifold |E(2)

− 〉 ∝ |2,0〉+ |0,2〉+(U +
√

U2 +16J2)/2
√

2J|1,1〉. That
is, ωL =ωc+(U−

√
U2 +16J2)/4. Note that this state converges to the ‘Mott’ state

|1,1〉 as U → ∞.
Studying this set-up, Grujic and coworkers have discovered that strong photon

bunching (g(2) � 1) can be observed even when U is significantly stronger than J
[48]. This is depicted in Fig. 6, which plots the local g(2) of the emitted photons as
a function of J and U . Note that the diagram is broadly divided into three regions,
defined by the Poissonian (g(2)≈ 1), anti-bunched (g(2) < 1), and bunched (g(2) > 1)
statistics of the emitted photons. The crossover points from anti-bunching to bunch-
ing are depicted by the black line, showing that there is a critical coupling strength,
Jc, below which no bunching can be observed. This is further illustrated in Fig. 6(b),
where the auto-correlations along the two white lines in (a) are drawn for various
values of the driving strength. In both the linear (U � γ) and the hardcore (U � γ)

Fig. 6 Photon super-bunching due to photon tunneling in the presence of the Kerr nonlinearity. (a)
Emitted photon statistics g(2) as a function of the photon tunneling strength J and Kerr nonlinearity
U . Above some critical threshold Jc indicated by the black curve, photon emission is bunched
(g(2) > 1). Otherwise, photon emission is anti-bunched. (b) Emitted photon statistics g(2) as a
function of Kerr nonlinearity U above and below the critical tunneling strength Jc. Super-bunching
can be observed for tunneling strengths larger than Jc. We note that the definition of U used in the
figure is two times larger than the definition used in Eq. (1). Taken from Grujic et al. [48].
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limit, expected behaviours are observed: in the linear regime, the steady state is a
coherent state, inheriting the Poissonian statistics from the driving laser, while in
the hardcore regime, no more than a single photon per resonator can be injected,
resulting in completely anti-bunched light. The behaviour of photons in between
these extreme limits, however, depends strongly on the actual values of U and J.
For J > Jc, there can be strong bunching (g(2)� 1) even with significant repulsion
between photons U > J. Similar behaviour was found in the JCH dimer also [48].

The origin of strong bunching can be traced to the relative enhancement of the
two-photon sector in the NESS, relative to the single-photon sector, as the nonlin-
earity is increased. In the linear case the NESS is a coherent state, meaning that the
probability of having two-photons in the second cavity is equal to the square of the
probability to have a single photon, giving rise to the observed coherence. Initially
with increasing U/J, this distribution is modified such that the probability of hav-
ing two photons is enhanced, i.e., it is larger than the square of the probability of
having a single photon, because the driving field is detuned from the single-particle
manifold. This explains the initial rise in g(2). However, this trend cannot continue
indefinitely because the |2,0〉+ |0,2〉 portion in the driven two-photon eigenstate
decreases with with increasing U/J. At some point the |1,1〉 part of the two-photon
eigenstate starts to dominate and the system exhibits antibunching. The interplay
between the enhanced total two-photon sector and the suppressed local two-photon
sector with increase in U/J gives rise to the observed behaviour in g(2).

4.3 Localisation-delocalisation transition of photons

Instead of continuously driving the system, let us now prepare the system in a cer-
tain state and observe its dynamics. The steady state of the system will be the trivial
vacuum state, but we can still observe interesting physics in the transient dynamics.
In particular, strong atom-photon interaction gives rise to a dramatic transition from
a localised phase to a delocalised phase as first discovered by Schmidt et al. [49].
In this set-up, photons are initially localised within a single site of a dimer. With-
out atom-photon coupling, the initially localised photons hop into the unoccupied
cavity. However, as the atom-photon interaction is increased, there is a sharp transi-
tion to the localised regime where photons are trapped in the initial cavity. Similar
delocalisation-localisation transition, or photon freezing, was first discovered in the
BH-type systems and is known as self-trapping [50, 51, 52, 53, 54, 55]. The result
has been generalised to larger arrays by Schetakis et al. [56].

The system is represented schematically in Fig. 7. There are M resonators with
the left-side resonators initially occupied by N0 photons per resonator with the atoms
in the ground state. The transition between localised and delocalised phases is nicely
captured by the photon imbalance defined as

Z(t) =
∑

M/2
j=1 〈â

†
j(t)â j(t)〉−∑

M
j=M/2+1〈â

†
j(t)â j(t)〉

∑
M
j=1〈â

†
j(t)â j(t)〉

, (9)
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or rather the time-averaged version of it, which we will denote as Z̄. Using this def-
inition, the localised regime is characterised by |Z̄| ≈ 1 and the delocalised regime
by Z̄ ≈ 0.

Fig. 7 Schematic representation of the JCH system exhibiting ‘freezing’ of photons. The left
cavity of a dimer is initially pumped to contain 4 photons per resonator. The tunneling ratio is J
and the atom-photon coupling strength is g.

Figure 8 provides a succinct account of the delocalised (left hand side) and lo-
calised (right hand side) dynamics for the lossless dimer with 7 initial photons. It
shows the imbalance Z and the time average of it (Z̄(t)) for two values of atom-
photon coupling strength: One well below the critical coupling strength, g = 0.3gcl

c
(left hand side), and the other is well above it, g = 2.0gcl

c (right hand side), where
gcl

c is the critical coupling strength which in the semiclassical approximation can
be derived as gcl

c ≈ 2.8
√

N0J [49]. Below the critical coupling strength, photons are
free to travel back and forth between the cavities and the average imbalance Z̄ goes
to zero with time. Above the critical strength, however, photons are self-trapped and
cannot move to the right half of the array (rapid oscillations in the photon number is
due to an energy exchange with the atom). This self-trapping behaviour stems from
the fact that, for the symmetric system, the two states with opposite imbalance 1
and -1 are approximate eigenstates of the system. For the dissipationless dimer, the
time scale of the oscillation between the states of opposite imbalance can be found
within the degenerate perturbation theory as 1/(cN0J(J/g)N0−1) with cN0 a constant
that depends on N0 [49]. In the strongly nonlinear regime, the time scale diverges
with increasing N0, i.e., the photons are effectively trapped in the initial site.

Detailed calculation shows that the localisation transition is shifted to smaller g
values and the transition is smoothened in the quantum case, i.e. gqu

c < gcl
c . With

dissipation, the imbalance goes to zero trivially as the photons leave the system,
but within the decay time, the localisation behaviour can be clearly observed. Inter-
estingly, the dissipation can help one to achieve the transition from the delocalised
regime to the localised regime. This follows from the fact that the critical coupling
strength gqu

c increases with the number of photons in the system (as described by
the semiclassical approximate formula gcl

c ∝
√

N0J). Consider an experimental situ-
ation in which g is fixed and less than gqu

c . As the photons leave the system, the total
photon number decreases and consequently gqu

c decreases along with it. This means
that gqu

c will eventually dip below g, at which point the system enters the localised
regime.
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Fig. 8 Photon number imbalance (blue curves) and the time-averaged imbalance (red curves) for
the lossless dimer with 7 initial photons. (a) Below the critical coupling strength, g = 0.3gcl

c , show-
ing delocalised dynamics. (b) Above the critical coupling strength, g = 2.0gcl

c , showing localised
dynamics.

Such dissipation-induced transition has been observed experimentally in a su-
perconducting circuit platform by Rafery et al. [57]. In this experiment, the atom-
photon interaction is initially turned off by detuning the superconducting qubits out
of resonance, and the resulting linear system is driven by a coherent pulse. Coherent
oscillations of photons automatically prepare the required initial state with imbal-
ance 1 at a certain time, at which point the interaction is ramped up by bringing the
qubits into resonance. Figure 9 depicts the experimentally measured phase diagram,
in which the homodyne signal of the photons from the initially unoccupied site is
shown as a function of the initial mean photon number Ni and time. Up to about
Ni ≈ 20, the atom-photon interaction strength g is greater than the critical strength
gqu

c and the photons are localised. Increasing the initial mean photon number beyond
Ni > 20, g becomes smaller than gqu

c and the photons start to oscillate between the
two sites. However, as the system loses photons, the localised regime is recovered
as the total number of photons in the system dips below some critical number.

Fig. 9 Phase diagram of the dissipation-induced delocalisation-localisation transition for the two-
site system. Homodyne signal from the initially unoccupied site as a function of initial photon
number (Ni) and time. For large enough Ni the system starts in the delocalised regime, but as time
progresses and photons are lost from the cavity, the system enters the localised regime. Taken from
Raftery et al. [57].
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4.4 Fermionisation of hardcore photons

In Sect. 4.2, we have seen that the local second-order intensity correlation function
reveals anti-bunching behaviour in the strongly interacting limit (U/J � 1). The
physical picture is that two-photons cannot occupy the same site because of strong
repulsion between them. This is reminiscent of the fermionic behaviour, where the
Pauli exclusion principle prohibits two fermions from occupying the same state. In
fact, in 1 dimensional systems in equilibrium, strong interactions between bosons
are known to induce fermionic behaviour [58]. As the on-site nonlinearity U in the
BH model approaches infinity, double occupancy of any resonator is completely
suppressed and the bosonic wave function of the system can be written in terms of
the wave function of free fermions [59]. That such fermionisation can be observed
in driven dissipative CRAs was first noticed by Carusotto et al. [60]. By calculating
the spectrum and intensity-intensity correlation functions of the output light in the
NESS, it was shown that the strongly correlated many-body nature of the photons
can be readily observed. Here we follow the work by Grujic et al. [47], which in-
vestigated an analogous phenomenon in the JCH system. Readers are referfed to
Ch. [Gerace] or the original article [60] for further details on the BH system.

Consider a homogeneously driven 3-site cyclic array of nonlinear resonators.
The eigenstates of this system in the hardcore regime can be determined by the
aforementioned bose-fermi mapping. These eigenstates are conveniently labelled
by quasi-momenta (of the Bloch modes), where the lowest eigenstates are found
to be the one-particle state at zero momentum |q = 0〉, and the two-particle state
|q,−q〉 with equal and opposite momenta q = π/3 [60].

The first evidence of the presence of fermionised photons can be observed in the
steady-state excitation number as shown in Fig. 10(a). For the BH model, we clearly
see the two lowest-lying fermionic energy eigenstates |q = 0〉 and |π/3,−π/3〉 at
∆c =−2J,−J in the hard-core regime (black dashed curve). Also shown is an effect
of finite U/J: the peak is red-shifted towards lower energy (black solid curve). The
JCH system shows the almost identical behaviour in the ‘photonic regime’ of po-
laritons, where the atom-photon detuning is large compared to the coupling strength
g such that the photonic contribution to polaritons dominates over the atomic con-
tribution. Photon numbers in the hardcore regime of the JCH model are calculated
by truncating to at most one polariton excitation in each cavity.

From these calculations we conclude that the (JC) polaritons are also fermionised
in the strongly interacting regime. However, achieving strongly interacting regime
for the photonic polaritons requires a very large value of coupling strength (g/γ ≈
2× 105 has been used in Fig. 10(a)) to compensate for the large atom-photon de-
tuning. So, the question arises: Can we observe the same phenomenon for a more
modest value of g? Figure 10(b) displays the total excitation number for g/γ ≈ 800,
showing that similar physics can be observed by reducing the values of ∆ and g. It is
interesting to note that the quantitative agreement to the fermionised limit is better
achieved for ∆ = g.

Further evidence of fermionisation can be obtained by inspecting the second-
order intensity correlations between photons. For this purpose, the auto-correlations
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Fig. 10 (a) Steady state photon number as a function of laser-cavity detuning for both the BH and
JCH systems. One particle peaks are located on the left (∆c =−2J) and two-particle peaks on the
right. Strongly nonlinear cases are shown by the solid blue (BH) and the dotted red (JCH) curves,
whereas the strictly hard-core limit is shown by the dotted black (BH) and the dotted green (JCH)
curves. Parameters are M = 3 cavities, J/γ = 20, Ω/γ = 0.5, ∆/g = −10, and g/γ ≈ 2× 105.
(b) Analogous photon number spectra for the JCH model with a smaller atom-photon detuning ∆ .
g/γ ≈ 800 as calculated from Eq. (7). (c) The auto- and cross-correlations measured at the two-
particle peak as a function of nonlinearity in both the BH and JCH (∆ = 2J) models. Values of U
are determined from Eq. (7). Taken from Grujic et al. [47].

g(2)j, j and the cross-correlations g(2)j, j+1 are depicted in Fig. 10(c). The driving field
is tuned at the two-particle resonance. We have already seen the behaviour of the
auto-correlations in Sect. 4.2. In the weakly nonlinear regime, the resonance peaks
corresponding to different values of N (the total number of photons in the array)
overlap, and the photons inherit the Poissonian nature of the pump field [60]. With
increasing nonlinearity, the two-photon peak initially gives rise to strong photon
bunching, before fermionisation takes place at which point the photons become
strongly anti-bunched. Fermionisation of photons is further corroborated by the
cross-correlations, which increases with the nonlinearity, meaning that the photons
are preferentially located next to each other.

4.5 Polariton crystallisation

In the above scenario we assumed homogeneous driving, i.e., all sites were driven
with the driving field of the same intensity and phase. Let us now see an ex-
ample of what happens when the system is driven inhomogeneously. The case
where the nearest-neighbour driving fields have a phase difference of π/2 (Ωk =
Ω exp(ikπ/2)) has been studied by Hartmann [61]. This system exhibits an intrigu-
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ing phenomenon of photon crystallisation, which will be briefly reviewed here. We
follow the presentation in [47], which generalised the BH system in the original pro-
posal to the JCH system. Interested readers are recommended to read the original
paper [61] for an in-depth analysis of the effects of the inhomogeneous driving.

Fig. 11 (a) Steady state intensity correlations for a cyclic 16-site JCH system, driven by lasers
exciting the π/2 momentum mode. Connecting lines are drawn to guide the eye. Parameters are
J/γ = 2, g/γ = 10, and |Ωk|/γ = 2. Also shown (solid green) are the intenstiy correlations for
the BH system with a ‘matched’ Kerr nonlinearity U/γ ≈ 6. (b) Closer view of the correlation
function. (c) The atomic and photonic population in each resonator in the steady state for three
different values of atom-resonator detuning, as well as the on-site intensity correlations. Taken
from Grujic et al. [47].

The system consists of a cyclic ring of 16 cavities, with the above mentioned
driving field arrangement. The latter creates a flow of polaritons around the ring,
with momentum π/2, when the laser frequency is set to the lowest energy transi-
tion. The interplay between the flow and on-site interaction gives rise to the phe-
nomenon of polariton crystallisation: there is a larger probability of finding photons
in neighbouring cavities than in cavities further apart. This is evident in the second-
order correlation function as shown in Fig. 11(a) and (b): the on-site anti-bunching
is accompanied by nearest-neighbour intensity correlations that are stronger than
correlations between more distant cavities. The interpretation is that the polaritons
form dimers across two neighbouring sites which then move together around the
array.

Both the BH and JCH systems clearly yield similar qualitative results, although
there are qualitative differences in the small detuning limit considered here. As
noted in the previous subsection, only in the ‘photonic regime’–where the photon-
atom detuning is very large and g even larger–would one expect a quantitative
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match. Furthermore, the atom-photon detuning provides an additional knob in the
JCH system that is absent in the BH system: it controls the composition of the po-
laritons. The photonic and atomic contributions to the polaritons are depicted in
Fig. 11(c) for three different values of atom-cavity detuning. In this regime, the
atomic contribution increases with ∆ , which explains the enhanced on-site anti-
bunching with increasing ∆ .

4.6 Phases in 2D arrays

So far, we have limited our attention to 1D arrays, for which the steady-state or time-
evolution could be studied numerically using either exact diagonalisation methods
or the MPS formalism. Now we would like to discuss the physics of 2D arrays,
where a whole new range of physics are waiting to be explored. However, there is a
slight problem. In 2D, the application of tensor network ansatz does not work very
well due to an unfavourable scaling of entanglement and are therefore difficult to
investigate numerically. For this reason studies up to now have either focused on
small systems or employed variants of mean-field analysis. Here, we give a brief
survey of recent studies of 2D CRAs based on the latter.

Initially, the dynamics of interacting photons after an initial preparation in the
Mott state were studied by Tomadin and coworkers [62]. To solve the master equa-
tion, the authors employed the cluster mean-field approach, which reduces the whole
system to a cluster of cavities plus mean-fields representing the rest of the system it
is interacting with. For a single-site-cluster case, this amounts to making the mixed
state equivalent of the usual mean-field approximation â†

i â j → 〈â†
i 〉â j + â†

i 〈â j〉. In
the typical quench scenario, the dynamics of interacting photons show character-
istic differences depending on whether the system parameters are in the Mott or
superfluid regime. Such signatures are also observed in the dissipative cases and
are manifest in the coherence of the cavity emission. In the Mott-regime the equal-
time second-order intensity correlation function stays zero, while in the superfluid-
regime it gains a finite value within the photonic lifetime.

A mean-field phase diagram of the steady-state density matrix in the driven dissi-
pative scenario has also been explored. Firstly, the phase diagram of the driven dissi-
pative 2D BH array was mapped out by Le Boité et al. [63, 64], who found regions of
unstable, mono-stable, and bi-stable phases. Despite Mott-lobe-like structures char-
acterised by one stable solution with photon-antibunching, the phase diagram is very
different from its equilibrium counterpart, showing rich many-body physics arising
in the non-equilibrium scenario. Secondly, Jin and co-workers have investigated the
phases of a 2D BH array, but with an extra component of nearest-neighbour cross-
Kerr interaction (V ∑i, j n̂in̂ j) [65, 66]. Due to this extra term, the NESS phases were
shown to be classified into a uniform phase and a checkerboard phase. In the uniform
phase, two neighbouring cavities have equal densities whereas in the checkerboard
(or staggered) phase they have a finite density-difference. Furthermore, the NESS
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can show non-trivial oscillatory behaviour, hinting at a non-equilibrium analog of
the supersolid phase.

Clearly, the validity of these mean-field results should be confirmed with ap-
proaches that take into account longer-ranged quantum correlations across the lat-
tice. Numerical methods that go beyond the cluster mean-field approaches are un-
der development. These include a hybrid real-space renormalisation group approach
called ‘Corner space renormalisation method’ [67] and a self-consistent projection
operator theory that derives an exact equation of motion for the reduced density
matrices of an arbitrary sub-lattice [68].

4.7 Quantum Hall physics with light

It is possible to engineer artificial gauge fields for photons in a 2D CRA and thereby
achieve photonic quantum Hall systems. There are several proposals to prepare and
probe (integer or fractional) photonic quantum Hall states, but we will focus on
recent developments on driven dissipative signatures in photonic quantum Hall sys-
tems and refer the interested reader to Ch. [Hafezi].

In a lattice system, gauge fields such as magnetic fields can be included by the
so-called Peierls substitution:

J ∑
〈i, j〉

â†
i â j +h.c.→ J ∑

〈i, j〉
eiφi, j â†

i â j +h.c.. (10)

Essentially, a particle traveling around any loop accumulates a phase factor cor-
responding to the sum of φi, j over the loop. It is possible to engineer such site-
dependent hopping amplitudes in two-dimensional CRAs, to create an artificial
magnetic field. Then, in analogy to the electronic systems, the presence of the on-site
interaction gives rise to a photonic fractional Hall effect. The latter can be checked
by performing measurements on the output photons and calculating the overlap with
the bosonic Laughlin state [69], or can be inferred from the second-order intensity
correlation function of the collective mode [70]. Here, we we review the work by
Umucalılar and Carusotto [69].

Consider a 4 by 4 lattice in the hard-core limit U/J → ∞, which is weakly
pumped such that only up to 2 photons are allowed in the system at any given time.
The effective magnetic field strength B is set such that the number of flux quanta, the
total magnetic flux divided by the flux quantum, is 4. This choice gives the filling
fraction 1/2 when there are two photons in the system. In a conventional fractional
quantum Hall system, the ground state is described by the bosonic analogue of a
generalised Laughlin wave function [71]. However, the steady-state of the proposed
driven dissipative set-up surely does not coincide with this state because there are 0
and 1 photon manifolds. Interestingly, though, the two-photon sub-manifold of the
steady-state density matrix exhibits a strong overlap with the generalised Laugh-
lin wave function. This has been shown in [69], where the two-photon amplitude
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ψi j ≡ Tr[ρssâiâ j] has been calculated numerically and compared with the bosonic
Laughlin state. Note that ψi j can be measured experimentally by performing multi-
ple homodyne measurements as schematically illustrated in Fig. 12 (a). An example
of a numerically calculated ψi j is shown in Fig. 12 (b), along with the correspond-
ing Laughlin wave function. The system is driven at a two-photon resonance and
weak dissipation γ/J = 0.03 and weak driving Ω/γ = 0.1 are assumed. An overlap
of up to 98.9% can be achieved for γ/J = 0.002, while for a more realistic loss rate
γ/J = 0.05, the overlap value is 90.0%. These high overlap values show that despite
the losses and driving, one can prepare strongly-correlated photonic states which
are analogues of the Laughlin state of fractional quantum Hall systems.

Fig. 12 (a) Schematic illustration of the experimental set-up to measure the two-photon amplitude
ψi j . (b) Comparison of the normalised two-photon amplitude for a fixed i = i0 (red thick arrows)
and the generalised Laughlin function (black thin arrows). The reference site i0 is marked by a
circle. Reprinted with permission from Umucalılar and Carusotto [69]. Copyright (2012) by the
American Physical Society.

A driven dissipative analogue of the integer quantum Hall effect has also been
proposed in a linear 2D CRA, where an experimentally viable scheme to measure
the global Chern number (and even the local Berry curvature) was devised [72].
In this proposal, a photonic analogue of the integer quantum Hall system is inves-
tigated, in which there is a constant force driving a current. Such a force can be
modelled by a position dependent energy term H f = F ∑m,n nâ†

m,nâm,n (force in -y
direction). Recall that in integer quantum Hall systems the driven current induces a
Hall current in the x-direction, whose conductivity is quantised. This quantisation
is robust against various imperfections due to its topological nature, and is captured
by the Chern number associated with each Bloch band. Remarkably, it is possible to
measure the Chern number in a driven dissipative set-up as proposed by Ozawa and
Carusotto [72]. Alternative methods, based on tuning twisted boundary conditions,
to experimentally measure the topological invariants in driven-dissipative settings
were proposed by Hafezi [73] and Bardyn and coworkers [74].

To understand the method by Ozawa and Carusotto, consider a linear 2D array
(of size 41 × 41), with the central site driven by a coherent field of amplitude Ω .
Then, because the system is linear, we can replace the operators âm,n by complex
amplitudes am,ne−iω0t . When the driving force is absent, i.e., F = 0, the injected pho-
tons either disperse through the lattice (Fig. 13(a) and (b)) or stay localised within
the central site (Fig. 13(c)), depending on whether the driving frequency lies within
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a Bloch band or a band gap. With the driving force turned on (F = 0.1J), however,
the photons clearly ‘travel’ towards the left as shown in Fig. 13(d). It is possible to
show that the displacement in the center of mass 〈x〉 ≡∑m,n m|am,n|2/∑m,n |am,n|2 is
related to the Berry curvature ΩB(k) by the formula [72]

〈x〉= F
∫

MBZ γΩB(k)n2(k)∫
MBZ n(k)

. (11)

Here, MBZ stands for the magnetic Brillouin zone; n(k) = [(ωL−E(k))2 + γ2]−1,

Fig. 13 (a)–(d) Distributions of the photon amplitudes |am,n| on a 41 × 41 lattice. (a) F = 0,
γ = 0.01J, and a pump frequency within the lowest band. (b) The same as in (a) but with larger
loss rate γ = 0.02J. (c) The same as in (a) but the pump frequency lies within a band gap. (d) The
same as in (a) but with F = 0.1J. (e) Displacement 〈x〉 as a function of F/J, for a pump frequency
within the lowest band. The solid blue line is for γ/J = 0.05 and the dashed green line is for
γ/J = 0.08. Reprinted with permission from Ozawa and Carusotto [72]. Copyright (2014) by the
American Physical Society.

where ωL is the driving frequency; E(k) is the energy dispersion of the correspond-
ing band. In the large-loss limit where γ is bigger than the width of the Bloch band
under consideration but smaller than the band gap, the above formula reduces to

〈x〉 ≈ qCF
2πγ

, (12)

where C is the Chern number. On the other hand, if the loss rate is very small com-
pared to the width of the Bloch band, the formula reduces to
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〈x〉 ≈ Ω̄B(ωL)F
2γ

, (13)

where Ω̄B(ωL) is the averaged Berry curvature on the E(k) = ωL curve. Examples
of the linear dependence of 〈x〉 on F is shown in Fig. 13(e).

Therefore, depending on the value of the loss rate, one can either directly measure
the Chern number or the local Berry curvature. For the lowest Bloch band, which
has C = −1, the theoretically calculated value using the above method was shown
to be as close as -0.97, demonstrating that the signature of the integer quantum Hall
effect can be directly measured in the driven dissipative set-up. Furthermore, the
ability to measure the Berry curvature allows one to detect nontrivial properties of
the photonic honeycomb lattice in the absence of an external magnetic field. In the
latter, there are two bands near the Dirac points whose degeneracy is lifted when
two neighbouring sites have different energies. Even though the total Chern number
vanishes in the absence of a synthetic magnetic field, the two bands are known to
possess nontrivial Berry curvatures. Because the Chern number vanishes, one needs
to resolve the Berry curvature in order to detect the system’s nontrivial properties,
which can be done using the above method.

4.8 Other works

There are a number of interesting works on driven dissipative CRAs that we could
not cover due to spatial limitations. Here we provide a brief survey of some of these,
so that the interested readers can refer to original articles.

First of all, there are many works that investigate properties of photons emit-
ted from a dimer. Liew and Savona discovered the phenomena of ‘unconventional
photon blockade’, where photon blockade is achieved in the weakly Kerr-nonlinear
regime in which anti-bunching would otherwise be absent [75]. This was shown to
result from an interference of excitation pathways [76] and was generalised to a cou-
pled resonator with second-order nonlinearity [77]. The fluorescence spectrum and
the spectrum of the second-order intensity correlation function of the JC dimer were
calculated in [78], both for coherent and incoherent driving fields, while photon
statistics in a BH dimer were investigated with emphasis on photon anti-bunching
in [79, 80]. Scaling of this anti-bunching behaviour with increasing array size was
studied within a mean-field theory [81]. In a slightly different setting, transport of
photons in a BH array of up to 60 sites was studied using an MPS method adapted to
mixed states [82]. Here, only the first cavity is driven and the underlying many-body
states were shown to be visible in the transmission spectrum. Transport of quantum
light in a BH dimer was also studied, showing that more detailed information about
the underlying correlated states is revealed when one uses two photons of different
energies instead of a coherent field as the input [83].

Other works look at connections with well-known condensed matter systems. A
quantum optical analogue of the Josephson interferometer in a three-site set-up was
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proposed by Gerace and co-workers [84]. There, in analogy to the Josephson junc-
tion, two end cavities are driven by coherent fields with different phases, while the
middle cavity contains single-photon nonlinearity. The interplay between tunneling
and interaction gives rise to rich physics in the steady-state, details of which can
be found in Ch. [Gerace]. A driven dissipative realisation of the Kitaev chain [85]
was proposed by Bardyn and İmamoğlu [86], showing that Majorana zero modes
can be created and detected in a CRA. To obtain the so-called p-wave pairing term,
the authors propose to use parametric driving in the strongly-interacting regime.
Photons are then effectively spin-1/2 particles, allowing one to use Jordan-Wigner
transformation to achieve the Kitaev chain.

5 Summary and outlook

In this chapter, we have reviewed out-of-equilibrium many-body physics in coupled
resonator arrays. A short survey of possible experimental platforms was provided,
along with two theoretical models (Jaynes-Cummings-Hubbard and Bose-Hubbard)
to describe them as well as the master equation description of driven dissipative
CRAs. Then we reviewed a range of many-body non-equilibrium phenomena, start-
ing from those arising in a two-site set-up and finishing with phenomena in 2D
arrays. A brief survey of many interesting works that could not be covered in detail
was then given.

The study of driven dissipative CRAs has only recently begun and there are many
exciting avenues to be explored. Experimentally, it is still quite challenging to build
an array of resonators with large nonlinearity, although splendid progress is being
made in the field of circuit-QED as we have seen in Sect. 4.3. Controlling the fluctu-
ations of local parameters is another limitation. Theoretically, one can look at ways
to enhance the effects of nonlinearity, as in unconventional quantum blockade, to
help ease the requirement of strong nonlinearity. More pressing is the development
of theoretical tools to study driven dissipative 2D arrays. As we have alluded to
earlier, 1D systems can be simulated efficiently using the MPS formalism, but 2D
system are waiting for further developments. There is already progress in this di-
rection as we briefly mentioned at the end of the last section, and more will surely
follow. With the on-going developments in both the experimental and theoretical
fronts, many more exciting discoveries will surely follow in this nascent field.
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Appendix: Matrix Product States and quantum trajectories

In this Appendix we provide some more details about MPS methods and quantum
trajectories approach. First we specify the problem to be solved in general.

Quantum master equation

It is known that the most general form of a Markovian time-local master equation
that preserves the trace, Hermiticity, and positivity of the system’s density matrix ρ

must be of so-called Lindblad form [44, 46]:

dρ

dt
=−i[Ĥ,ρ]+∑

α

(
L̂α ρL̂†

α −
1
2
{

L̂†
α L̂α ,ρ

})
, (14)

where the Lindblad operators L̂α =
√

γα Aα and Ĥ is the Hamiltonian describing
the unitary part of the system’s dynamics. The γα are identified as the characteristic
rates at which ‘jump operators’ Aα act on the system. In the case of CRAs the jump
operators are the bosonic mode operators â j or atomic ladder operator σ̂

−
j which

act locally on a site j. The locality of the jump operators and the nearest-neighbour
nature of the JCH and BH Hamiltonians in 1D are crucial to the applicability of
MPS methods to solve this problem.

Matrix Product States

Generally we consider an L site chain composed of subsystems with d-dimensional
Hilbert space spanned by states enumerated as | j〉, with j ∈ {1, · · · ,d}. The Hilbert
space for the total system is then spanned by the product basis |j〉 = | j1, · · · , jL〉 ≡
| j1〉⊗ · · ·⊗ | jL〉. An arbitrary pure state of the system is then

|Ψ〉 = ∑
j

c j1 j2··· jL |j〉 , (15)

which is described by dL complex amplitudes c j1 j2··· jL . To circumvent this in-
tractable description the MPS ansatz parameterises the amplitudes of a state in terms
of a product of matrices indexed by the local configurations as

|Ψ〉= ∑
j

(
L̄TA j1A j2 · · ·A jL R̄

)
|j〉 . (16)

Here the A jm are a set of d matrices (one for each local state | jm〉) of dimension
χ× χ , while L̄ and R̄ are boundary vectors which collapse the product into a scalar
complex amplitude. This ansatz has only Ldχ2 complex numbers, so if χ is fixed
and small it provides a compact class of states [32].
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A special feature of MPS is that the dimension of the matrices χ is directly
related to the entanglement of the system when it is bipartitioned. If a state is weakly
entangled then it will possess an accurate MPS representation with a small fixed χ .
Given an MPS, reduced density matrices for subsets of sites, norms and expectation
values of observables can be efficiently computed, essentially via products of the
state’s constituent matrices [31, 32]. These features become especially useful for 1D
systems which are described by a Hamiltonian Ĥ = ∑m ĥm,m+1 composed of at most
nearest-neighbour terms. Many such systems are now known to possess weakly
entangled ground states and low-lying excited states. Thus an MPS description of
them is both natural and effective [32].

To find ground states and excited states of Ĥ the highly successful density ma-
trix renormalisation group (DMRG) method [32, 33, 34, 37] was developed which
is essentially a variational minimiser over the MPS ansatz. For our purposes here
however the extension of DMRG to time-evolution via the time evolving block dec-
imation (TEBD) algorithm is most relevant [35, 36]. Here we sketch some of the
key points to this method. Our task is to apply unitary time-evolution described by
the propagator Û(δ t) = exp(−iĤδ t) to an initial MPS for a small time step δ t.

First, we break up the exponential using a Suzuki-Trotter decomposition [87]
such as

Û(δ t) =

[
∏

odd m
exp(−iĥm,m+1δ t)

][
∏

even m
exp(−iĥm,m+1δ t)

]
+O(δ t2), (17)

where we have utilised that all the odd Hamiltonian terms ĥm,m+1 commute among
themselves, and similarly for the even terms. Higher order Trotter decompositions
have a similar form. What we are left with is a product of unitary operators (or
gates) exp(−iĥm,m+1δ t) acting on nearest-neighbouring pairs of sites which have to
be applied to the MPS initial state in sequence.

Second, upon applying a gate exp(−iĥm,m+1δ t) to an MPS the matrices A jm and
A jm+1 for the two sites m and m+1 get merged together into a joint matrix B jm, jm+1 .
To bring the state back into MPS form the matrix B jm, jm+1 needs to be factorised.
This is achieved by using a singular value decomposition (SVD) which breaks
B jm, jm+1 7→ Ã jmÃ jm+1 yielding new updated matrices describing the evolved MPS
[35, 36]. During this operation the dimensions of the new Ã matrices can grow and
so after repeated applications of gates the MPS can eventually become intractably
large. However, the singular values outputted by the SVD provide a quantitative
means of truncating the dimension down, essentially compressing the state and thus
ensuring that the MPS remains tractable. This truncation will only be accurate if the
evolution does not generate too much entanglement. Once all the gates in the de-
composition are applied we have an MPS approximation for |Ψ(δ t)〉= Û(δ t) |Ψ〉,
and the procedure can be repeated to evolve further in time [32].



Out-of-equilibrium physics in driven dissipative coupled resonator arrays 25

Quantum Trajectory Algorithm

Rather than simulating the dynamics of an open system by evolving its density ma-
trix ρ directly, an alternative approach is to propagate stochastic realisations of indi-
vidual system state vectors {|Ψi(t)〉} [41, 42, 43]. These ‘quantum trajectories’ are
piecewise deterministic processes, interrupted randomly by ‘quantum jumps’ due to
the system’s interaction with the environment. An approximation to the density ma-
trix may be obtained by averaging the contributions Πi = {|Ψi(t)〉〈Ψi(t)|} of many
trajectories [45]. The details of the ‘unravelling’ of the Lindblad master equation
into stochastic wave functions are described in Ref. [46]. Here we give a practical
recipe on how to generate quantum trajectories.

For a set of Lindblad operators {L̂α}, we construct a non-unitary effective Hamil-
tonian Ĥeff:

Ĥeff = Ĥ− i
2 ∑

α

L̂†
α L̂α , . (18)

Evolution under the Schrödinger equation with this effective Hamiltonian leads to
a decay in the norm of the wave-function as a consequence of interactions with the
environment. Trajectories are then generated as follows.

1. Begin the simulation by initialising the system in a state |Ψ〉= |Ψ(0)〉.
2. Draw a randomly chosen number r ∈ [0,1].
3. Evolve the system under the action of the non-Hermitian Hamiltonian of Eq. (18).

This will involve computing |Ψ(t)〉= exp(−iĤefft) |Ψ(0)〉. Due to the decaying
norm of the state, physical expectation values are calculated during this evolution
using the normalised form of the state |Ψ(t)〉/|||Ψ(t)〉||.

4. Continue the evolution until the norm falls below the randomly chosen number,
i.e. when the condition |||Ψ(tjump)〉||< r is first met. One of the possible quantum
jumps now occurs.

5. The jump operator to be applied is chosen by first generating the normalised
probability distribution

Pα =
||L̂αΨ(tjump)〉||2

∑β ||L̂βΨ(t.jump)〉||2
, (19)

then randomly selecting a jump operator index j from this weighted distribution.
The normalised state after the application of the chosen operator is

L̂ j|Ψ(tjump)〉
||L̂ j|Ψ(tjump)〉||

. (20)

We continue looping over steps 2-5 until the end of our simulation window. Cru-
cially all the steps in this algorithm, such as the time-evolution in step 3, the com-
putation of norms in step 4 and the application of a jump operator in step 5, can be
implemented efficiently on MPS so long as the Hamiltonian and Lindblad operators
act locally or on nearest-neighbour sites.
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