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Summary
We consider the large sparse symmetric linear systems of equations that arise in
the solution of weak constraint four-dimensional variational data assimilation,
a method of high interest for numerical weather prediction. These systems can
be written as saddle point systems with a 3 × 3 block structure but block elim-
inations can be performed to reduce them to saddle point systems with a 2 × 2
block structure, or further to symmetric positive definite systems. In this arti-
cle, we analyse how sensitive the spectra of these matrices are to the number
of observations of the underlying dynamical system. We also obtain bounds on
the eigenvalues of the matrices. Numerical experiments are used to confirm the
theoretical analysis and bounds.

K E Y W O R D S
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1 INTRODUCTION

Data assimilation estimates the state of a dynamical system by combining observations of the system with a prior estimate.
The latter is called a background state and it is usually an output of a numerical model that simulates the dynam-
ics of the system. The impact that the observations and the background state have on the state estimate depends on
their errors whose statistical properties we assume are known. Data assimilation is used to produce initial conditions
in numerical weather prediction (NWP),1,2 as well as other areas, for example, flood forecasting,3 research into atmo-
spheric composition,4 and neuroscience.5 In operational applications, the process is made more challenging by the size
of the system, for example, the numerical model may be operating on 108 state variables and 105−106 observations may
be incorporated.6,7 Moreover, there is usually a constraint on the time that can be spent on calculations.

The solution, called the analysis, is obtained by combining the observations and the background state in an optimal
way. One approach is to solve a weighted least-squares problem, which requires minimizing a cost function. An active
This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the
original work is properly cited.
© 2020 The Authors. Numerical Linear Algebra with Applications published by John Wiley & Sons, Ltd.
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research topic in this area is the weak constraint four-dimensional variational (4D-Var) data assimilation method.8-14 It
is employed in the search for states of the system over a time period, called the assimilation window. This method uses a
cost function that is formulated under the assumption that the numerical model is not perfect and penalizes the weighted
discrepancy between the analysis and the observations, the analysis and the background state, and the difference between
the analysis and the trajectory given by integrating the dynamical model.

Effective minimization techniques need evaluations of the cost function and its gradient that involve expensive oper-
ations with the dynamical model and its linearized variant. Such approaches are impractical in operational applications.
One way to approximate the minimum of the weak constraint 4D-Var is to use an inexact Gauss-Newton method,15 in
which a series of linearized quadratic cost functions with a low resolution model are minimized,16 and the minima are
used to update the high resolution state estimate. The state estimate update is found by solving sparse symmetric linear
systems using an iterative method.17

To increase the potential of using parallel computations when computing the state update with weak constraint
4D-Var, Fisher and Gürol12 introduced a symmetric 3 × 3 block saddle point formulation. The resulting large symmetric
linear systems are solved using Krylov subspace solvers.14,17,18 One criteria that affects their convergence is the spectra of
the coefficient matrices.18 We derive bounds for the eigenvalues of the 3 × 3 block matrix using the work of Rusten and
Winther.19 In addition, inspired by the practice in solving saddle point systems that arise from interior point methods,20,21

we reduce the 3 × 3 block system to a 2 × 2 block saddle point formulation and derive eigenvalue bounds for this system.
We also consider a 1 × 1 block formulation with a positive definite coefficient matrix, which corresponds to the standard
method.8,9 Some of the blocks in the 3 × 3 and 2 × 2 block saddle point coefficient matrices, and the 1 × 1 block positive
definite coefficient matrix depend on the available observations of the dynamical system. We present a novel examination
of how adding new observations influences the spectrum of these coefficient matrices.

In Section 2, we formulate the data assimilation problem and introduce weak constraint 4D-Var with the 3 × 3 block
and 2× 2 block saddle point formulations and the 1× 1 block symmetric positive definite formulation. Eigenvalue bounds
for the saddle point and positive definite matrices and results on how the extreme eigenvalues and the bounds depend on
the number of observations are presented in Section 3. Section 4 illustrates the theoretical considerations using numerical
examples, and concluding remarks and future directions are presented in Section 5.

2 VARIATIONAL DATA ASSIMILATION

The state of the dynamical system of interest at times t0<t1<· · ·<tN is represented by the state vectors x0,x1,… ,xN with
xi ∈ Rn. A nonlinear model mi that is assumed to have errors describes the transition from the state at time ti to the state
at time ti+1, that is

xi+1 = mi(xi) + 𝜂i+1, (1)

where 𝜂i represents the model error at time ti. It is further assumed that the model errors are Gaussian with zero mean
and covariance matrix Qi ∈ Rn×n, and that they are uncorrelated in time, that is, there is no relationship between the
model errors at different times. In NWP, the model comes from the discretization of the partial differential equations
that describe the flow and thermodynamics of a stratified multiphase fluid in interaction with radiation.1 It also involves
parameters that characterize processes arising at spatial scales that are smaller than the distance between the grid points.22

Errors due to the discretization of the equations, errors in the boundary conditions, inaccurate parameters, and so on are
components of the model error.23

The background information about the state at time t0 is denoted by xb ∈ Rn. xb usually comes from a previous short
range forecast and is chosen to be the first guess of the state. It is assumed that the background term has errors that are
Gaussian with zero mean and covariance matrix B ∈ Rn×n.

Observations of the dynamical system at time ti are given by yi ∈ Rpi . In NWP, there are considerably fewer observa-
tions than state variables, that is, pi ≪n. In addition, there may be indirect observations of the variables in the state vector
and a comparison is obtained by mapping the state variables to the observation space using a nonlinear operator i. For
example, satellite observations used in NWP provide top of the atmosphere radiance data, whereas the model operates on
different meteorological variables, for example, temperature, pressure, wind, and so on.24 Hence, values of meteorological
variables are transformed into top of the atmosphere radiances in order to compare the model output with the observa-
tions. In this case, the operator i is nonlinear and complicated. Approximations made when mapping the state variables
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to the observation space, different spatial and temporal scales between the model and some observations (observations
may give information at a finer resolution than the model), and preprocessing, or quality control, of the observations (see,
eg, section 5.8 of Kalnay1) comprise the representativity error.25 The observation error is made up of the representativity
error combined with the error arising due to the limited precision of the measurements. It is assumed to be Gaussian with
zero mean and covariance matrix Ri ∈ Rpi×pi . The observation errors are assumed to be uncorrelated in time.7

2.1 Weak constraint 4D-Var

In weak constraint 4D-Var, the analysis xa
0 , x

a
1 ,… , xa

N is obtained by minimizing the following nonlinear cost function

J(x0, x1,… , xN) =
1
2
(x0 − xb)TB−1(x0 − xb) + 1

2

N∑
i=0

(yi −i(xi))TR−1
i (yi −i(xi))

+ 1
2

N−1∑
i=0

(xi+1 − mi(xi))TQ−1
i+1(xi+1 − mi(xi)). (2)

This cost function is referred to as the state control variable formulation. Here, the control variables are defined as
the variables with respect to which the cost function is minimized, that is, x0,x1,… ,xN in (2). Choosing different control
variables and obtaining different formulations of the cost function is possible.8 If the model is assumed to have no errors
(ie, xi+1 = mi(xi)), the cost function simplifies as the last term in (2) is removed; this is called strong constraint 4D-Var.
Rejecting this perfect model assumption and using weak constraint 4D-Var may lead to a better analysis.9

Iterative gradient-based optimization methods are used in practical data assimilation.7,26 These require the cost func-
tion and its gradient to be evaluated at every iteration. In operational applications, integrating the model over the
assimilation window to evaluate the cost function is computationally expensive. The gradient is obtained by the adjoint
method (see, eg, section 2 of Lawless7 and section 3.2 of Talagrand26 for an introduction), which is a few times more
computationally expensive than evaluating the cost function. This makes the minimisation of the nonlinear weak con-
straint 4D-Var cost function impractical. Hence, approximations have to be made. We introduce such an approach in the
following section.

2.2 Incremental formulation

Minimisation of the 4D-Var cost function in an operational setting is made feasible by employing an iterative
Gauss-Newton method, as first proposed by Courtier et al16 for the strong constraint 4D-Var. In this approach, the solu-
tion of the weak constraint 4D-Var is approximated by solving a sequence of linearised problems, that is, the (l+1)th
approximation of the state is

x(l+1)
i = x(l)i + 𝛿x(l)i , i ∈ {0, 1,… ,N}, (3)

where 𝛿x(l)i is obtained as the minimizer of the linearised cost function

J𝛿(𝛿x(l)0 , 𝛿x(l)1 ,… , 𝛿x(l)N ) = (𝛿x(l)0 − b(l))TB−1(𝛿x(l)0 − b(l))

+ 1
2

N∑
i=0

(H(l)
i 𝛿x(l)i − d(l)

i )TR−1
i (H(l)

i 𝛿x(l)i − d(l)
i )

+ 1
2

N−1∑
i=0

(M(l)
i 𝛿x(l)i − 𝛿x(l)i+1 − 𝜂

(l)
i+1)

TQ−1
i+1(M

(l)
i 𝛿x(l)i − 𝛿x(l)i+1 − 𝜂

(l)
i+1), (4)

where b(l) = x(l)0 − xb, d(l)
i = yi −i(x(l)i ), 𝜂(l)i = x(l)i − mi−1(x(l)i−1) (as in (1)) and M(l)

i and H(l)
i are the model mi and the obser-

vation operator i, respectively, linearised at x(l)i . Minimisation of (4) is called the inner loop. The lth outer loop consists
of updating the approximation of the state (3), linearizing the model mi and the observation operator i, and computing
the values b(l), d(l)

i , and 𝜂(l)i . This cost function is quadratic, which allows the use of effective minimisation techniques,
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such as conjugate gradients (see Chapter 5 of Nocedal and Wright27). In NWP, the computational cost of minimizing the
4D-Var cost function is reduced by using a version of the inner loop cost function that is defined for a model with lower
spatial resolution, that is, on a coarser grid.28 We do not consider such an approach in the subsequent work, because
our results on the change of the spectra of the coefficient matrices and the bounds (that are introduced in the following
section) hold for models with any spatial resolution.

For ease of notation, we introduce the following 4D (in the sense that they contain information in space and time)
vectors and matrices. These vectors and matrices are indicated in bold.

x(l) =
⎛⎜⎜⎜⎝

x(l)0
x(l)1
⋮

x(l)N

⎞⎟⎟⎟⎠ , 𝛿x(l) =
⎛⎜⎜⎜⎝
𝛿x(l)0
𝛿x(l)1
⋮
𝛿x(l)N

⎞⎟⎟⎟⎠ ,b
(l) =

⎛⎜⎜⎜⎝
b(l)

−𝜂(l)1
⋮

−𝜂(l)N

⎞⎟⎟⎟⎠ , d(l) =
⎛⎜⎜⎜⎝

y0 −0(x(l)0 )
y1 −1(x(l)1 )

⋮
yN −N(x(l)N )

⎞⎟⎟⎟⎠ ,
where x(l), 𝛿x(l),b(l) ∈ R(N+1)n, and d(l) ∈ Rp, p = ΣN

i=0pi. We also define the matrices

L(l) =

⎛⎜⎜⎜⎜⎜⎝

I
−M(l)

0 I
−M(l)

1 I
⋱ ⋱

−M(l)
N−1 I

⎞⎟⎟⎟⎟⎟⎠
, H(l) =

⎛⎜⎜⎜⎝
H(l)

0
H(l)

1
⋱

H(l)
N

⎞⎟⎟⎟⎠ ,

where I ∈ Rn×n is the identity matrix, L(l) ∈ R(N+1)n×(N+1)n and H(l) ∈ Rp×(N+1)n. We define the block diagonal covariance
matrices

D =
⎛⎜⎜⎜⎝

B
Q1

⋱
QN

⎞⎟⎟⎟⎠ and R =
⎛⎜⎜⎜⎝

R0
R1

⋱
RN

⎞⎟⎟⎟⎠ ,
D ∈ R(N+1)n×(N+1)n and R ∈ Rp×p. The state update (3) may then be written as

x(l+1) = x(l) + 𝛿x(l),

and the quadratic cost function (4) becomes

J𝛿(𝛿x(l)) = 1
2
||L(l)𝛿x(l) − b(l)||2D−1 +

1
2
||H(l)𝛿x(l) − d(l)||2R−1 , (5)

where ||a||2A−1 = aTA−1a. We omit the superscript (l) for the outer iteration in the subsequent discussions. The minimum
of (5) can be found by solving linear systems. We discuss different formulations of these in the next three subsections.

2.2.1 3× 3 block saddle point formulation

In pursuance of exploiting parallel computations in data assimilation, Fisher and Gürol12 proposed obtaining the state
increment 𝛿x by solving a saddle point system (see also Freitag and Green14). New variables are introduced

𝝀 = D−1(b − L𝛿x) ∈ R
(N+1)n, (6)

𝝁 = R−1(d − H𝛿x) ∈ R
p. (7)

The gradient of the cost function (5) with respect to 𝛿x provides the optimality constraint

0 = LTD−1(L𝛿x − b) + HTR−1(H𝛿x − d)
= −(LT𝝀 + HT𝝁). (8)
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Multiplying (6) by D and (7) by R together with (8), yields a coupled linear system of equations:

3

(
𝝀
𝝁
𝛿x

)
=

( b
d
0

)
, (9)

where the coefficient matrix is given by

3 =

( D 0 L
0 R H

LT HT 0

)
∈ R

(2(N+1)n+p)×(2(N+1)n+p). (10)

3 is a sparse symmetric indefinite saddle point matrix that has a 3 × 3 block form. Such systems are explored in
the optimization literature.20,21,29 When solving these systems iteratively, it is usually assumed that calculations involving
the blocks on the diagonal are computationally expensive, while the off-diagonal blocks are cheap to apply and easily
approximated. However, in our application, operations with the diagonal blocks are relatively cheap and the off-diagonal
blocks are computationally expensive, particularly because of the integrations of the model and its adjoint in L and LT .

Recall that the sizes of the blocks R, H, and HT depend on the number of observations p. Thus, the size of 3 and
possibly some of its characteristics are also affected by p. The saddle point systems that arise in different outer loops vary
in the right-hand sides and the linearization states of L and H.

Because of the memory requirements of sparse direct solvers, they cannot be used to solve the 3 × 3 block saddle point
systems that arise in an operational setting. Iterative solvers (such as MINRES,30 SYMMLQ,30 GMRES31) need to be used.
These Krylov subspace methods require matrix-vector products with 3 at each iteration. Note that the matrix-vector
product 3q, qT = (qT

1 , q
T
2 , q

T
3 ), q1, q3 ∈ R(N+1)n, q2 ∈ Rp, involves multiplying D and LT by q1, R and HT by q2, and L

and H by q3. These matrix-vector products may be performed in parallel. Furthermore, multiplication of each component
of each block matrix with the respective part of the vector qi can be performed in parallel. The possibility of multiplying
a vector with the blocks in L and LT in parallel is particularly attractive, because the expensive operations involving the
linearised model Mi and its adjoint MT

i can be performed at the same time for every i∈ {0,1,… ,N−1}.

2.2.2 2× 2 block saddle point formulation

The saddle point systems with 3 × 3 block coefficient matrices that arise from interior point methods are often reduced to
2 × 2 block systems.20,21 The 2 × 2 block formulation has not been used in data assimilation before. Because of its smaller
size, it may be advantageous. Therefore, we now explore using this approach in the weak constraint 4D-Var setting.

Multiplying Equation (6) by D and eliminating 𝝁 in (8) gives the following equivalent system of equations

2

(
𝝀
𝛿x

)
=
(

b
−HTR−1d

)
, (11)

where

2 =
(

D L
LT −HTR−1H

)
∈ R

2(N+1)n×2(N+1)n. (12)

The reduced matrix 2 is a sparse symmetric indefinite saddle point matrix with a 2 × 2 block form. Unlike the 3 × 3
block matrix 3, its size is independent of the number of observations. 2 involves the matrix R−1, which is usually
available in data assimilation applications. The computationally most expensive blocks L and LT are again the off-diagonal
blocks.

Solving (11) in parallel might be less appealing compared with solving (9) in parallel: for a Krylov subspace method,
the (2, 2) block −HTR−1H need not be formed separately, that is, only operators to perform the matrix-vector products
with HT , R−1, and H need to be stored. Hence, a matrix-vector product 2q, qT = (qT

1 , q
T
3 ), q1, q3 ∈ R(N+1)n, requires

multiplying D and LT by q1, L and H by q3 (which may be done in parallel) and subsequently R−1 by Hq3, followed by
−HT by R−1Hq3. Hence, the cost of matrix-vector products for the 3 × 3 and 2 × 2 block formulations differs in that the
former needs matrix-vector products with R while the latter requires products with R−1, and the 2 × 2 block formulation
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requires some sequential calculations. However, notice that the expensive calculations that involve applying the operators
L and LT (the linearised model and its adjoint) can still be performed in parallel.

2.2.3 1× 1 block formulation

The 2 × 2 block system can be further reduced to a 1 × 1 block system, that is, to the standard formulation (see, eg,
Trémolet8 and A. El-Said10 for a more detailed consideration):

(LTD−1L + HTR−1H)𝛿x = LTD−1b + HTR−1d. (13)

Observe that the coefficient matrix

1 = LTD−1L + HTR−1H

= (LT HT)
(

D−1 0
0 R−1

)(
L
H

)
(14)

is the negative Schur complement of
(

D 0
0 R

)
in 3. The matrix 1 is block tridiagonal and symmetric positive definite,

hence the conjugate gradient method by Hestenes and Stiefel32 can be used. The computations with the linearised model
in L at every time step can again be performed in parallel. However, the adjoint of the linearised model in LT can only be
applied after the computations with the model are finished, thus limiting the potential for parallelism.

3 EIGENVALUES OF THE SADDLE POINT FORMULATIONS

One factor that influences the rate of convergence of Krylov subspace iterative solvers for symmetric systems is the spec-
trum of the coefficient matrix (see, eg, section 9 in the survey article18 and Lectures 35 and 38 in the textbook33 for a
discussion). Simoncini and Szyld34 have shown that any eigenvalues of the saddle point systems that lie close to zero can
cause the iterative solver MINRES to stagnate for a number of iterations while the rate of convergence can improve if the
eigenvalues are clustered.

In the following, we examine how the eigenvalues of the block matrices3,2, and1 change when new observations
are added. This is done by considering the shift in the extreme eigenvalues of these matrices, that is, the smallest and
largest positive and negative eigenvalues. We then present bounds for the eigenvalues of these matrices.

3.1 Preliminaries

In order to determine how changing the number of observations influences the spectra of 3, 2, and 1, we explore the
extreme singular values and eigenvalues of some blocks in 3, 2, and 1. We state two theorems that we will require.
Here, we employ the notation 𝜆k(A) to denote the kth largest eigenvalue of a matrix A and subscripts min and max are
used to denote the smallest and largest eigenvalues, respectively.

Theorem 1 (See section 8.1.2 of Golub and Van Loan35). If A and C are n×n Hermitian matrices, then
𝜆k(A)+𝜆min(C)≤𝜆k(A+C)≤𝜆k(A)+𝜆max(C), k∈{1,2,… ,n}.

Theorem 2 (Cauchy's Interlace Theorem, see Theorem 4.2 in Chapter 4 of Stewart and Sun36). If A is an n×n Hermitian
matrix and C is a (n−1)× (n−1) principal submatrix of A (a matrix obtained by eliminating a row and a corresponding
column of A), then

𝜆n(A)≤ 𝜆n−1(C)≤ 𝜆n−1(A)≤ · · ·≤ 𝜆2(A)≤ 𝜆1(C)≤ 𝜆1(A).

In the following lemmas we describe how the smallest and largest singular values of (LTHT) (here L and H are as
defined in Section 2.2) and the extreme eigenvalues of the observation error covariance matrix R change when new
observations are introduced. The same is done for the largest eigenvalues of HTR−1H assuming that R is diagonal. In
these lemmas the subscript k∈ {0,1,… ,(N+1)n−1} denotes the number of available observations and the subscript k+1
indicates that a new observation is added to the system with k observations, that is, matrices Rk ∈ Rk×k and Hk ∈ Rk×(N+1)n
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correspond to a system with k observations and Rk+1 and Hk+1 correspond to the system with an additional observation.

We write Rk+1 =
(

Rk r
rT 𝛼

)
and Hk+1 =

(
Hk

hT
k+1

)
, where r ∈ Rk, 𝛼 ∈ R1, 𝛼>0 and hk+1 ∈ R(N+1)n correspond to the new

observation.

Lemma 1. Let 𝜔min and 𝜔max be the smallest and largest singular values of (LT HT
k ), and 𝜙min and 𝜙max be the smallest

and largest singular values of (LT HT
k+1). Then

𝜔2
min ≤ 𝜙2

min and 𝜔2
max ≤ 𝜙2

max

that is, the smallest and largest singular values of (LTHT) increase or are unchanged when new observations are added.

Proof. We consider the eigenvalues of LTL + HT
k Hk and LTL + HT

k+1Hk+1, which are the squares of the singular values
of (LT HT

k ) and (LT HT
k+1), respectively (see section 2.4.2 of Golub and Van Loan35). We can write

HT
k+1Hk+1 =

(
HT

k hk+1
)( Hk

hT
k+1

)
= HT

k Hk + hk+1hT
k+1.

Then by Theorem 1,

𝜔2
min + 𝜆min(hk+1hT

k+1) ≤ 𝜙2
min, k ∈ {0, 1,… , (N + 1)n − 1},

and since hk+1hT
k+1 is a rank 1 symmetric positive semidefinite matrix, 𝜆min(hk+1hT

k+1) = 0.
The proof for the largest singular values is analogous. ▪

Lemma 2. Consider the observation error covariance matrices Rk ∈ Rk×k and Rk+1 ∈ R(k+1)×(k+1). Then

𝜆min(Rk+1) ≤ 𝜆min(Rk) and 𝜆max(Rk) ≤ 𝜆max(Rk+1), k ∈ {0, 1,… , (N + 1)n − 1},

that is, the largest (respectively, smallest) eigenvalue of R increases (respectively, decreases), or is unchanged when new
observations are introduced.

Proof. When adding an observation, a row and a corresponding column are appended to Rk while the other entries of
Rk are unchanged. The result is immediate by applying Theorem 2. ▪

Lemma 3. If the observation errors are uncorrelated, that is, R is diagonal, then

𝜆max(HT
k R−1

k Hk) ≤ 𝜆max(HT
k+1R−1

k+1Hk+1), k ∈ {0, 1,… , (N + 1)n − 1},

that is, for diagonal R, the largest eigenvalue of HTR−1H increases or is unchanged when new observations are introduced.

Proof. The proof is similar to that of Lemma 1. For diagonal Rk+1:

R−1
k+1 =

(
R−1

k
𝛼−1

)
, 𝛼 > 0.

Then

HT
k+1R−1

k+1Hk+1 =
(
HT

k hk+1
)(R−1

k
𝛼−1

)(
Hk

hT
k+1

)
= HT

k R−1
k Hk + 𝛼−1hk+1hT

k+1.

Hence, by Theorem 1,

𝜆max(HT
k R−1

k Hk) + 𝛼−1𝜆min(hk+1hT
k+1) ≤ 𝜆max(HT

k+1R−1
k+1Hk+1), k ∈ {0, 1,… , (N + 1)n − 1},

and since 𝜆min(hk+1hT
k+1) = 0 the result is proved. ▪
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Matrix 3 2 1 D HTR−1H R

Eigenvalue 𝛾 i 𝜁 i 𝜒 i 𝜓 i 𝜈i 𝜌i

Matrix (LTHT) L

Singular value 𝜃i 𝜎i

T A B L E 1 Notation for the eigenvalues and
singular values

Notation

In the following, we use the notation given in Table 1 for the eigenvalues of 3, 2, and 1, and the eigenvalues and
singular values of the blocks within them. We use subscripts min and max to denote the smallest and largest eigenvalues
or singular values, respectively, and 𝜃min denote the smallest nonzero singular value of (LTHT). In addition, ||⋅|| denotes
the L2 norm.

We also use
𝜏min = min{𝜓min, 𝜌min}, (15)

𝜏max = max{𝜓max, 𝜌max}. (16)

3.2 Bounds for the 3× 3 block formulation

To determine the numbers of positive and negative eigenvalues of 3 given in (10), we write 3 as a congruence
transformation

3 =

( D 0 L
0 R H

LT HT 0

)
=

( D 0 0
0 R 0

LT HT I

)( D−1 0 0
0 R−1 0
0 0 −LTD−1L − HTR−1H

)( D 0 L
0 R H
0 0 I

)
= L̂B̂L̂T ,

where I ∈ R(N+1)n×(N+1)n is the identity matrix. Thus, by Sylvester's law of inertia (see Section 8.1.5 of Golub and Van
Loan35), 3 and B̂ have the same inertia, that is, the same number of positive, negative, and zero eigenvalues. Since the
blocks D−1, R−1 and LTD−1L + HTR−1H = 1 are symmetric positive definite matrices, 3 has (N+1)n+p positive and
(N+1)n negative eigenvalues. In the following theorem, we explore how the extreme eigenvalues of 3 change when new
observations are introduced.

Theorem 3. The smallest and largest negative eigenvalues of 3 either move away from zero or are unchanged when
new observations are introduced. The same holds for the largest positive eigenvalue, while the smallest positive eigenvalue
approaches zero or is unchanged.

Proof. Let 3,k denote 3 where p= k. To account for an additional observation, a row and a corresponding column is
added to 3, hence 3,k is a principal submatrix of 3,k+1. Let

𝜆−(N+1)n(3,k) ≤ 𝜆−((N+1)n−1)(3,k) ≤ · · · ≤ 𝜆−1(3,k) < 0 < 𝜆1(3,k) ≤ · · · ≤ 𝜆(N+1)n+k(3,k)

be the eigenvalues of 3,k, and

𝜆−(N+1)n(3,k+1) ≤ 𝜆−((N+1)n−1)(3,k+1) ≤ · · · ≤ 𝜆−1(3,k+1) < 0 < 𝜆1(3,k+1) ≤ · · · ≤ 𝜆(N+1)n+k+1(3,k+1)

be the eigenvalues of 3,k+1. Then by Theorem 2:

smallest negative eigenvalues ∶ 𝜆−(N+1)n(3,k+1) ≤ 𝜆−(N+1)n(3,k),
largest negative eigenvalues ∶ 𝜆−1(3,k+1) ≤ 𝜆−1(3,k),
smallest positive eigenvalues ∶ 𝜆1(3,k+1) ≤ 𝜆1(3,k),
largest positive eigenvalues ∶ 𝜆(N+1)n+k(3,k) ≤ 𝜆(N+1)n+k+1(3,k+1).

▪
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To obtain information on not only how the eigenvalues of 3 change because of new observations, but also on
where the eigenvalues lie when the number of observations is fixed, we formulate intervals for the negative and positive
eigenvalues of 3.

Theorem 4. The negative eigenvalues of 3 lie in the interval

I− =
[

1
2

(
𝜏min −

√
𝜏2

min + 4𝜃2
max

)
,

1
2

(
𝜏max −

√
𝜏2

max + 4𝜃2
min

)]
(17)

and the positive eigenvalues lie in the interval

I+ =
[
𝜏min,

1
2

(
𝜏max +

√
𝜏2

max + 4𝜃2
max

)]
, (18)

where 𝜏min,𝜏max, and 𝜃i are defined in (15), (16), and Table 1.

Proof. Lemma 2.1 of Rusten and Winther19 gives eigenvalue intervals for matrices of the form A =
(

C E
ET 0

)
. Applying

these intervals in the case C =
(

D 0
0 R

)
and ET =

(
LT HT) yields the required results. ▪

We present two corollaries that describe how the bounds in Theorem 4 change if additional observations are
introduced and conclude that the change of the bounds is consistent with the results in Theorem 3.

Corollary 1. The interval for the positive eigenvalues of 3 in (18) either expands or is unchanged when new observations
are added.

Proof. First, consider the positive upper bound 1
2

(
𝜏max +

√
𝜏2

max + 4𝜃2
max

)
. By Lemma 1, 𝜃2

max increases or is unchanged
when additional observations are included. If 𝜏max = 𝜌max, the same holds for 𝜏max (by Lemma 2). If 𝜏max=𝜓max, changing
the number of observations does not affect 𝜏max. Hence, the positive upper bound increases or is unchanged.

The positive lower bound 𝜏min is unaltered if 𝜏min=𝜓min. If 𝜏min=𝜌min, the bound decreases or is unchanged by
Lemma 2. ▪

Corollary 2. If 𝜏max=𝜓max, the upper bound for the negative eigenvalues of 3 in (17) is either unchanged or moves away
from zero when new observations are added. If 𝜏min=𝜓min, the same holds for the lower bound for negative eigenvalues
in (17).

Proof. The results follow from the facts that 𝜓max and 𝜓min do not change if observations are added, whereas 𝜃min and
𝜃max increase or are unchanged by Lemma 1. ▪

If 𝜏max = 𝜌max or 𝜏min = 𝜌min, it is unclear how the interval for the negative eigenvalues in (17) changes, because√
𝜏2

min + 4𝜃2
max can increase, decrease or be unchanged, and both 𝜏max and

√
𝜏2

max + 4𝜃2
min can increase or be unchanged.

3.3 Bounds for the 2 × 2 block formulation

2 given in (12) is equal to the following congruence transformation

2 =
(

D L
LT −HTR−1H

)
=
(

D 0
LT I

)(
D−1 0

0 −LTD−1L − HTR−1H

)(
D L
0 I

)
,

where I ∈ R(N+1)n×(N+1)n is the identity matrix. Then by Sylvester's law, 2 has (N+1)n positive and (N+1)n negative
eigenvalues. The change of the extreme negative and positive eigenvalues of 2 due to the additional observations is
analyzed in the subsequent theorem. However, the result holds only in the case of uncorrelated observation errors, unlike
the general analysis for 3 in Theorem 3.
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Theorem 5. If the observation errors are uncorrelated, that is, R is diagonal, then the smallest and largest negative eigen-
values of 2 either move away from zero or are unchanged when new observations are added. Contrarily, the smallest and
largest positive eigenvalues of 2 approach zero or are unchanged.

Proof. Matrices D and L do not depend on the number of observations. In Lemma 3, we have shown that HT
k+1R−1

k+1Hk+1 =
HT

k R−1
k Hk + 𝛼−1hk+1hT

k+1, (𝛼 > 0) for diagonal R. Hence, when 2,k denotes 2 with p=k, we can write

2,k+1 = 2,k +
(

0 0
0 −𝛼−1hk+1hT

k+1

)
= 2,k + 2,

where 2 has negative and zero eigenvalues. Let

𝜆−(N+1)n(2,k) ≤ · · · ≤ 𝜆−1(2,k) < 0 < 𝜆1(2,k) ≤ · · · ≤ 𝜆(N+1)n(2,k)

be the eigenvalues of 2,k, and

𝜆−(N+1)n(2,k+1) ≤ · · · ≤ 𝜆−1(2,k+1) < 0 < 𝜆1(2,k+1) ≤ · · · ≤ 𝜆(N+1)n(2,k+1)

be the eigenvalues of 2,k+1. By Theorem 1,

smallest negative eigenvalues ∶ 𝜆−(N+1)n(2,k) − 𝛼−1𝜆max(hk+1hT
k+1) ≤ 𝜆−(N+1)n(2,k+1) ≤ 𝜆−(N+1)n(2,k),

largest negative eigenvalues ∶ 𝜆−1(2,k) − 𝛼−1𝜆max(hk+1hT
k+1) ≤ 𝜆−1(2,k+1) ≤ 𝜆−1(2,k),

smallest positive eigenvalues ∶ 𝜆1(2,k) − 𝛼−1𝜆max(hk+1hT
k+1) ≤ 𝜆1(2,k+1) ≤ 𝜆1(2,k),

largest positive eigenvalues ∶ 𝜆(N+1)n(2,k) − 𝛼−1𝜆max(hk+1hT
k+1) ≤ 𝜆(N+1)n(2,k+1) ≤ 𝜆(N+1)n(2,k).

▪

We further search for the intervals in which the negative and positive eigenvalues of 2 lie. We follow a similar line
of thought as in Silvester and Wathen,37 with the energy arguments for any nonzero vector w ∈ R(N+1)n

𝜓min||w||2 ≤ wTDw ≤ 𝜓max||w||2, (19)

−𝜈max||w||2 ≤ −wTHTR−1Hw ≤ −𝜈min||w||2, (20)

𝜎min||w|| ≤ ||LTw|| ≤ 𝜎max||w||, (21)

𝜃min||w|| ≤ ||(LT HT)Tw|| ≤ 𝜃max||w||. (22)

Theorem 6. The negative eigenvalues of 2 lie in the interval

I− =
[

1
2

(
𝜓min − 𝜈max −

√
(𝜓min + 𝜈max)2 + 4𝜎2

max

)
,min {𝛽1,max {𝛽2, 𝛽3}}

]
, (23)

where

𝛽1 = 1
2

(
𝜓max − 𝜈min −

√
(𝜓max + 𝜈min)2 + 4𝜎2

min

)
, (24)

𝛽2 = −𝜌−1
max𝜃

2
min, (25)

𝛽3 = 1
2

(
𝜓max −

√
𝜓2

max + 4𝜃2
min

)
, (26)
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and the positive ones lie in the interval

I+ =
[

1
2

(
𝜓min − 𝜈max +

√
(𝜓min + 𝜈max)2 + 4𝜎2

min

)
,

1
2

(
𝜓max − 𝜈min +

√
(𝜓max + 𝜈min)2 + 4𝜎2

max

)]
. (27)

Proof. Assume that (uT , vT)T , u, v ∈ R(N+1)n is an eigenvector of2 with an eigenvalue 𝜁 . Then the eigenvalue equations
are

Du + Lv = 𝜁u, (28)

LTu − HTR−1Hv = 𝜁v. (29)

We note that if u= 0 then v= 0 by (28) and if v= 0 then u= 0 by (29). Hence, u,v≠ 0.
First, we consider 𝜁>0. Equation (29) gives v= (I𝜁+HTR−1H)−1LTu, where I ∈ R(N+1)n×(N+1)n. The matrix

I𝜁+HTR−1H is positive definite, hence nonsingular. We multiply (28) by uT and use the previous expression for v to get

uTDu + uTL(I𝜁 + HTR−1H)−1LTu = 𝜁 ||u||2. (30)

The eigenvalues of (I𝜁+HTR−1H)−1 in increasing order are (𝜁+𝜈max)−1,… ,(𝜁+𝜈min)−1. Then

uTL(I𝜁 + HTR−1H)−1LTu ≥
1

𝜁 + 𝜈max
||LTu||2

≥
1

𝜁 + 𝜈max
𝜎2

min||u||2 [by (21)].

Hence, this inequality together with (19) and (30) gives

𝜁 ||u||2 ≥ 𝜓min||u||2 + 1
𝜁 + 𝜈max

𝜎2
min||u||2

and solving

𝜁2 + (𝜈max − 𝜓min)𝜁 − 𝜓min𝜈max − 𝜎2
min ≥ 0

results in

𝜁 ≥
1
2

(
𝜓min − 𝜈max +

√
(𝜓min + 𝜈max)2 + 4𝜎2

min

)
.

Similarly, using the upper bound from (19) and employing (30) yields the upper bound

𝜁 ≤
1
2

(
𝜓max − 𝜈min +

√
(𝜓max + 𝜈min)2 + 4𝜎2

max

)
.

Now consider the case 𝜁<0. Since D−𝜁I is positive definite, from (28) u=−(D−𝜁I)−1Lv. Using this expression and
multiplying (29) by vT gives

−𝜁 ||v||2 = vTLT(D − 𝜁I(N+1)n)−1Lv + vTHTR−1Hv. (31)

Then using (20), (21) and the fact that the smallest eigenvalue of (D−𝜁I)−1 is (𝜓max−𝜁)−1 results in the inequality

−𝜁 ||v||2 ≥ 𝜎2
min||v||2 1

𝜓max − 𝜁
+ 𝜈min||v||2,

which can be expressed as

𝜁2 − (𝜓max − 𝜈min)𝜁 − 𝜈min𝜓max − 𝜎2
min ≥ 0,
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and its solution gives the upper bound

𝜁 ≤
1
2

(
𝜓max − 𝜈min −

√
(𝜓max + 𝜈min)2 + 4𝜎2

min

)
= 𝛽1. (32)

Notice that the bound (32) takes into account information on observations only if the system is fully observed.
Otherwise, p<(N+1)n and 𝜈min=0.

We obtain an alternative upper bound for the negative eigenvalues that depends on the observational information and
might be useful for the fully observed case, too. Equation (31) may be written as

−𝜁 ||v||2 = vT(LT HT)
(
(D − 𝜁I)−1 0

0 R−1

)(
L
H

)
v.

Eigenvalues of the 2 × 2 block matrix in the previous equation are the eigenvalues of (D−𝜁I)−1 and R−1. Thus, by an
energy argument (19),

−𝜁 ||v||2 ≥ min{𝜌−1
max, (−𝜁 + 𝜓max)−1}||(LT HT)Tv||2

≥ min{𝜌−1
max, (−𝜁 + 𝜓max)−1}𝜃2

min||v||2 [by (22)].

Hence,

𝜁 ≤ −𝜃2
min𝜄,

where 𝜄 = min{𝜌−1
max, (−𝜁 + 𝜓max)−1}. If 𝜄 = 𝜌−1

max, the upper bound is

𝜁 ≤ −𝜌−1
max𝜃

2
min = 𝛽2.

If 𝜄= (−𝜁+𝜓max)−1, the following inequality

𝜁2 − 𝜓max𝜁 − 𝜃2
min ≥ 0

gives the bound

𝜁 ≤
1
2

(
𝜓max −

√
𝜓2

max + 4𝜃2
min

)
= 𝛽3.

Hence,
𝜁 ≤ max{𝛽2, 𝛽3}. (33)

The required upper bound follows from (32) and (33).
Next, we obtain the lower bound for the negative eigenvalues. Using Equation (31) with the largest eigenvalue of

(D−𝜁I)−1 and other parts of (20) and (21) yields

−𝜁 ||v||2 ≤ 𝜎2
max||v||2 1

𝜓min − 𝜁
+ 𝜈max||v||2.

Solving
𝜁2 − (𝜓min − 𝜈max)𝜁 − 𝜈max𝜓min − 𝜎2

max ≤ 0

results in

𝜁 ≥
1
2

(
𝜓min − 𝜈max −

√
(𝜓min + 𝜈max)2 + 4𝜎2

max

)
.

▪

We observe that if the system is not fully observed, then p<(N+1)n and 𝜈min = 0, and the upper bound for the positive
eigenvalues and the upper bound for the negative eigenvalues (24) in Theorem 6 reduce to (2.11) and (2.13) of Silvester
and Wathen.37
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We are interested in how the bounds in Theorem 6 change if additional observations are introduced. The change to the
upper negative bound in (23) depends on which of (24), (25), or (26) gives the bound. Hence, in Corollary 3 we comment
on when (26) is larger than (25) and Corollary 4 describes a setting when the negative upper bound is given by (26).

Corollary 3.

max{𝛽2, 𝛽3} = 𝛽3 ⇔
1
2
(𝜓max +

√
𝜓2

max + 𝜃2
min) ≥ 𝜌max.

Proof. max{𝛽2,𝛽3}= 𝛽3 if and only if

1
2

(
𝜓max −

√
𝜓2

max + 4𝜃2
min

)
≥ −𝜌−1

max𝜃
2
min.

Rearranging this inequality gives

𝜓max + 2𝜌−1
max𝜃

2
min ≥

√
𝜓2

max + 4𝜃2
min.

Squaring both sides with further rearrangement results in

𝜃2
min(𝜌

−1
max𝜓max + 𝜌−2

max𝜃
2
min − 1) ≥ 0.

Since 𝜃2
min > 0, this is equivalent to

𝜌2
max − 𝜌max𝜓max − 𝜃2

min ≤ 0,

from which it follows that

𝜌max ≤
1
2

(
𝜓max +

√
𝜓2

max + 4𝜃2
min

)
.

▪

Corollary 3 can be used to check if the assumption in the following corollary holds.

Corollary 4. If the system is not fully observed and max{𝛽2,𝛽3}= 𝛽3, then the upper bound for the negative eigenvalues of
2 is given by (26).

Proof. The singular values of L and (LTHT) are the square roots of the eigenvalues of LTL and LTL+HTH, respectively.
Hence, by Theorem 1,

𝜎2
min + 𝜆min(HTH) ≤ 𝜃2

min,

where 𝜆min(HTH) ≥ 0, since HTH is symmetric positive semidefinite. In addition, if p<(N+1)n, then HTR−1H is singular,
that is, 𝜈min=0, and from (24) and (26)

𝛽1 = 1
2

(
𝜓max −

√
𝜓2

max + 4𝜎2
min

)
≥

1
2

(
𝜓max −

√
𝜓2

max + 4𝜃2
min

)
= 𝛽3 = max{𝛽2, 𝛽3}.

▪

We further describe how the negative upper bound changes if it is given by (24) or (26), including the case described
in Corollary 4.

Corollary 5. If the upper bound for the negative eigenvalues of 2 in (23) is given by 𝛽1 or 𝛽3, then the bound moves away
from zero or stays the same when new observations are added.

Proof. 𝛽1 does not change while the system is not fully observed. When the system becomes fully observed, 𝜈min>0 and
𝛽1 decreases. 𝛽3 decreases or stays the same by Lemma 1. ▪
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Note that if the negative upper bound in (23) is given by 𝛽2, it is unclear how the bound changes with the number of
observations, since both 𝜌max and 𝜃2

min increase or stay the same. The same is true for the positive bounds in (27). Only
𝜈max and 𝜈min depend on the available observations and they are contained in elements with positive and negative signs.

The result in Corollary 5 that applies for 2 with a general R is consistent with the result in Theorem 5 that considers
2 with a diagonal R. The same holds for the result in the following corollary, that determines how the lower bound for
the negative eigenvalues of 2 changes in the special case of uncorrelated observational errors.

Corollary 6. If the observation error covariance matrix R is diagonal, the negative lower bound in (23) moves away from
zero or stays the same when additional observations are introduced.

Proof. The result follows by applying Lemma 3 to see how 𝜈max changes. ▪

In the following corollary, we consider the intervals for the positive eigenvalues of 3 and 2 with a fixed number of
observations. It suggests that we may expect the positive eigenvalues of 2 to be more clustered than those of 3.

Corollary 7. The interval for the positive eigenvalues of 2 is contained in the interval for the positive eigenvalues of 3,
that is, [

1
2

(
𝜓min − 𝜈max +

√
(𝜓min + 𝜈max)2 + 4𝜎2

min

)
,

1
2

(
𝜓max − 𝜈min +

√
(𝜓max + 𝜈min)2 + 4𝜎2

max

)]
⊆[

𝜏min,
1
2

(
𝜏max +

√
𝜏2

max + 4𝜃2
max

)]
.

Proof. As observed in Corollary 4,

𝜎2
max + 𝜆min(HTH) ≤ 𝜃2

max,

with 𝜆min(HTH) ≥ 0. In addition, by definition 𝜏max ≥𝜓max and the following inequality for the upper bound for the
positive eigenvalues of 3 holds

1
2

(
𝜏max +

√
𝜏2

max + 4𝜃2
max

)
≥

1
2

(
𝜓max +

√
𝜓2

max + 4𝜃2
max

)
.

Thus, we show that the upper bound for positive eigenvalues of 3 is larger than the upper bound for positive
eigenvalues of 2:

1
2

(
𝜓max +

√
𝜓2

max + 4𝜃2
max

)
≥

1
2

(
𝜓max − 𝜈min +

√
(𝜓max + 𝜈min)2 + 4𝜎2

max

)
⇔ 𝜈min +

√
𝜓2

max + 4𝜃2
max ≥

√
(𝜓max + 𝜈min)2 + 4𝜎2

max

(squaring both sides and simplifying) ⇔ 2𝜃2
max + 𝜈min

√
𝜓2

max + 4𝜃2
max ≥ 𝜓max𝜈min + 2𝜎2

max

(rearranging) ⇔ 2(𝜃2
max − 𝜎2

max) ≥ 𝜈min(𝜓max −
√
𝜓2

max + 4𝜃2
max). (34)

Inequality (34) always holds because the left-hand side is positive and the right-hand side is negative.
We also show that the lower bound for the positive eigenvalues of 3 is smaller than the lower bound for the positive

eigenvalues of 2:

𝜏min ≤
1
2

(
𝜓min − 𝜈max +

√
(𝜓min + 𝜈max)2 + 4𝜎2

min

)
.

Note that by definition 𝜏min ≤𝜓min and the following inequality always holds

𝜓min ≤
1
2

(
𝜓min − 𝜈max +

√
(𝜓min + 𝜈max)2 + 4𝜎2

min

)
,
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because it can be simplified to

𝜓min + 𝜈max ≤

√
(𝜓min + 𝜈max)2 + 4𝜎2

min

(squaring both sides) ⇔ (𝜓min + 𝜈max)2 ≤ (𝜓min + 𝜈max)2 + 4𝜎2
min

⇔ 0 ≤ 4𝜎2
min.

▪

3.4 Bounds for the 1× 1 block formulation

The system matrix 1 given by (14) is symmetric positive definite and so its eigenvalues are positive. We determine how
these change due to additional observations when the observation errors are uncorrelated (as for the extreme eigenvalues
of 2 in Theorem 5).

Theorem 7. If the observation errors are uncorrelated, that is, R is diagonal, then the eigenvalues of 1 move away from
zero or are unchanged when new observations are added.

Proof. Let1,k denote1 where p= k. Then1,k+1 = LTD−1L + HT
k+1R−1

k+1Hk+1 = 1,k + 𝛼−1hk+1hT
k+1. The result follows

by applying Theorem 1. ▪

We formulate spectral bounds for 1 that depend on the largest and smallest eigenvalues of D and R, and the largest
and smallest singular values of (LTHT).

Theorem 8. The eigenvalues of 1 lie in the interval

I+ =
[
𝜃2

min∕𝜏max, 𝜃
2
max∕𝜏min

]
,

where 𝜃i and 𝜏 i are defined in Table 1, and (15) and (16).

Proof. Assume that u ∈ R(N+1)n is an eigenvector of1. Then the eigenvalue equation premultiplied by uT can be written
as

𝜒||u||2 = uT(LT HT)
(

D−1 0
0 R−1

)(
L
H

)
u,

where 𝜒 is an eigenvalue of 1. The smallest and largest eigenvalues of
(

D−1 0
0 R−1

)
are 𝜏−1

max and 𝜏−1
min, respectively. The

bounds follow from the following inequalities that are obtained using (22):

𝜒||u||2 ≥ 𝜏−1
maxuT(LT HT)

(
L
H

)
u ≥ 𝜏−1

max𝜃
2
min||u||2,

𝜒||u||2 ≤ 𝜏−1
minuT(LT HT)

(
L
H

)
u ≤ 𝜏−1

min𝜃
2
max||u||2.

▪

The following corollary explains how the upper bound for the eigenvalues of 1 changes with the addition of new
observations. This result that applies for 1 with a general R is consistent with Theorem 7 that considers 1 with a
diagonal R.

Corollary 8. The upper bound in Theorem 8 moves away from zero or is unchanged when new observations are added.

Proof. If 𝜏min = 𝜌min, 𝜏min decreases by Lemma 2. Otherwise 𝜏min does not change. The result follows by applying Lemma
1 to determine the change to 𝜃max. ▪

It is unclear how the lower bound in Theorem 8 changes with respect to the number of observations, because both
the numerator and denominator grow or stay unchanged by Lemmas 1 and 2, respectively.
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3.5 Alternative bounds

Alternative eigenvalue bounds for symmetric saddle point matrices have been formulated by Axelsson and Neytcheva.38

These depend on the eigenvalues of the matrices LTD−1L, R, D, and 1, and 𝜉 = max{|𝜆i(−1∕2
1 LTD−1L−1∕2

1 )|, i =
1,… , (N + 1)n}.

Theorem 9 (From Theorem 1 (c) of Axelsson and Neytcheva38). The negative eigenvalues of 3 lie in the interval

I− =
[

1
2

(
𝜏max −

√
𝜏2

max + 4𝜏max𝜆max(1)
)
,

1
2

(
𝜏min −

√
𝜏2

min + 4𝜏min𝜆min(1)
)]

and the positive ones lie in the interval

I+ =
[
𝜏min,

1
2

(
𝜏max +

√
𝜏2

max + 4𝜏max𝜆max(1)
)]

.

Note that the lower bound for the positive eigenvalues in Theorem 9 is the same as in Theorem 4.

Theorem 10 (From Theorem 1 (a) and (b) of Axelsson and Neytcheva38). The negative eigenvalues of 2 lie in the
interval

I− =
⎡⎢⎢⎣−𝜆max(1),

−𝜆min(1)
1 + 𝜉𝜆min(1)

𝜓min

⎤⎥⎥⎦ ,
and the positive ones lie in the interval

I+ =
[
𝜓min,

1
2

(
𝜓max +

√
𝜓2

max + 4𝜓max𝜆max(LTD−1L)
)]

. (35)

We observe that the bound (35) for the positive eigenvalues, unlike our bound in Theorem 6, is independent of the
number of observations. In addition, in practical applications it may not be possible to compute the upper bound for the
negative eigenvalues because of the 𝜉 term.

4 NUMERICAL EXPERIMENTS

4.1 System setup

We present results of numerical experiments using the Lorenz 96 model,39 where the state of the system at time ti is
xi = (X1

i ,X
2
i ,… ,Xn

i )
T and the evolution of xi components Xj,j∈{1,2,… ,n}, is governed by a set of n coupled ODEs:

dXj

dt
= −Xj−2Xj−1 + Xj−1Xj+1 − Xj + F,

where X−1 =Xn−1,X0 =Xn and Xn+1 =X1. This model is continuous in time and discrete in space. We assume that
X1,X2… ,Xn are equally spaced on a periodic domain of length one and take the space increment to be ΔX = 1/n. We
require the linearization of this model M(l)

i , i∈ {0,… ,N−1} to define 3, 2, and 1. In our experiments, we set n=40 and
F = 8, since the system shows chaotic behavior with the latter value. The equations are integrated using a fourth-order
Runge-Kutta scheme.40 The time step is set to Δt = 2.5×10−2 and the system is run for N = 15 time steps.

The assimilation system is set up for so-called identical twin experiments, by which synthetic data are generated using
the same model as is used in the assimilation. We generate a reference, or “true,” model trajectory xt by running the
Lorenz 96 model over the time window from prescribed initial conditions and with prescribed Gaussian model errors
𝜂i. An initial background state xb and observations yi at each time ti are then generated by adding Gaussian noise to xt.
Assimilation experiments are run using this background state and observations, assuming that the true state is unknown.
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T A B L E 2 Computed spectral intervals and extreme eigenvalues of 3 from Theorem 4 for different
observation networks (O.n.)

O.n. I− Eigenvalues I+ Eigenvalues

a [−2.193,−2.66×10−2] [−2.192,−2.99×10−2] [5.93×10−4,2.198] [3.56×10−3,2.195]

c [−2.249,−5.88×10−2] [−2.247,−6.18×10−2] [5.93×10−4,2.254] [1.70×10−3,2.251]

d [−2.360,−1.28×10−1] [−2.358,−1.31×10−1] [5.93×10−4,2.365] [1.13×10−3,2.362]

f [−2.410,−9.96×10−1] [−2.408,−9.96×10−1] [5.93×10−4,2.416] [9.14×10−4,2.413]

The error covariance matrices that are used to generate the model error in xt and the observation error in yi are also used
for the assimilation, that is, in the 3× 3 block, 2× 2 block, and 1× 1 block matrices. These error covariance matrices do not
change over time. The observation error covariance matrix is Ri = 𝜎2

o Ipi , where pi is the number of observations at time ti,
(diagonal Ri is a common choice in data assimilation experiments13,14) and the model error covariance matrix is equal to
the background error covariance matrix Qi = B = 𝜎2

b Cb, where Cb is a second-order auto-regressive correlation matrix41

with correlation length scale 1.5×10−2. We have also performed numerical experiments with Qi = 𝜎2
qCq ≠ B, where Cq is a

Laplacian correlation matrix,42 and 𝜎q and 𝜎b vary by a factor of two. We observed similar results to those presented here.
In our experiments, the parameters are chosen so that the observations are close to the real values of the variables, and
the background and the model errors are low, in particular, we set 𝜎o=10−1, which is about 5% of the mean of the values
in xt, and 𝜎b=5×10−2. yi consists of direct observations of the variables Xj,j∈ {1,2,… ,n} at time ti, hence the observation
operator i is linear.

All computations are performed using Matlab R2016b. In particular, the eigenvalues are computed using the Matlab
function eig. If only extreme eigenvalues are needed, eigs is used, and the extreme singular values are given by svds.

4.2 Eigenvalue bounds

We present numerically calculated eigenvalue bounds and eigenvalues of 3, 2, and 1 and illustrate their change with
the number of observations and the quality of the spectral estimates, presented in Section 3. We consider the following
observation networks that have different numbers of observations (p =

∑N
i=0 pi):

a. 1 observation at the final time t15,
b. 20 observations, observing every eighth model variable at every fourth time step (at times t3,t7,t11,t15),
c. 80 observations, observing every fourth model variable at every second time step (at times t1,t3,t5,t7,t9,t11,t13,t15),
d. 160 observations, observing every second model variable at every second time step (at the same times as in observation

network c),
e. 320 observations, observing every second model variable at every time step,
f. 640 observations, fully observed system.

In Figure 1, we plot the eigenvalues of the matrices 3, 2, and 1 together with the bounds from Theorems 4,6, and
8, respectively, for each of the observation networks a-f. In these experiments, as expected from Theorem 3, as the number
of observations increases, the smallest and largest negative and the largest positive eigenvalues of 3 move away from
zero and the smallest positive eigenvalue approaches zero. In addition, as determined in Corollary 1, the upper bound for
the positive eigenvalues of3 presented in Figure 1(I) grows and the lower bound stays the same (because the eigenvalues
of R do not change) when more observations are added. The change is too small to observe in the plots, hence we report
the extreme eigenvalues of 3 and the intervals from Theorem 4 for the networks a, c, e, and f in Table 2. Moreover, the
negative bounds for the eigenvalues of 3 in Figure 1(II) move away from zero. This agrees with Corollary 2, because here
𝜏min=𝜓min. However, in this setting 𝜏max=𝜌max and the same Corollary cannot be used to explain the change to the upper
bound. In general, the outer bounds (the largest positive and the smallest negative) for the eigenvalues of 3 are tight
and the inner bounds (the smallest positive and the largest negative) get tighter as the number of observations increases.

The positive eigenvalues of 2 displayed in Figure 1(III) approach zero as observations are added, whereas the nega-
tive eigenvalues in Figure 1(IV) move away from it. This is consistent with Theorem 5, which holds for this experiment



18 of 24 DAUŽICKAITĖ et al.

F I G U R E 1 Semilogarithmic plots of the positive and negative eigenvalues of the matrices 3 (I and II) and 2 (III and IV), and the
positive eigenvalues of 1 in V for the different observation networks (a-f). Eigenvalues are denoted with merged blue dots. The filled black
squares mark the bounds for eigenvalues of 3 in Theorem 4, 2 in Theorem 6, and 1 in Theorem 8. Note that the smallest negative
eigenvalues of 2 coincide with the bounds

because we have chosen diagonal R. The lower bounds for the positive and negative eigenvalues of 2 stay the same
when the observation network is changed. In these bounds only 𝜈max (the largest eigenvalue of HTR−1H) depends on the
observations. In our experiments, 𝜈max does not change because of our choice of H and R. The constant negative lower
bound is consistent with Corollary 6. The numerical values of the intervals from Theorem 6 and of the extreme eigenval-
ues of 2 for the networks a, c, d, and f are presented in Table 3. The upper positive bound moves toward zero when the
system becomes fully observed and is constant for the other networks, because the smallest eigenvalue 𝜈min of HTR−1H
is nonzero only for the fully observed system. The negative upper bound for the spectrum of 2 is given by 𝛽1 in (24) for
the fully observed system and 𝛽3 in (26) otherwise, and moves away from zero, in agreement with Corollary 5. Notice that
the eigenvalue bounds are tight. In addition, the numerical results confirm the statement of Corollary 7 that the interval
for the positive eigenvalues of 3 contains the bounds for positive eigenvalues of 2.

Note that 2 has p distinct eigenvalues that coincide with the negative lower bound in the plots. The distinct eigen-
values are explained by the bounds for individual eigenvalues in Corollary 9 in Appendix A, because in our experiments
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T A B L E 3 Computed spectral intervals and extreme eigenvalues of 2 from Theorem 6 for different observation networks (O.n.)

O.n. I− Eigenvalues I+ Eigenvalues

a [−1.0005×102,−2.83×10−2] [−1.0001×102,−2.99×10−2] [6.03×10−4,2.196] [3.91×10−3,2.195]

c [−1.0005×102,−6.07×10−2] [−1.0002×102,−6.50×10−2] [6.03×10−4,2.196] [1.78×10−3,2.148]

d [−1.0005×102,−1.29×10−1] [−1.0004×102,−1.33×10−1] [6.03×10−4,2.196] [1.15×10−3,2.101]

f [−1.0005×102,−1.00×102] [−1.0005×102,−1.00×102] [6.03×10−4,5.42×10−2] [9.35×10−4,5.15×10−2]

T A B L E 4 Computed spectral intervals and extreme eigenvalues
of 1 from Theorem 8 with different observation networks (O.n.)

O.n. I+ Eigenvalues

a [9.72×10−2,8.11×103] [3.23×10−1,6.30×103]

c [4.05×10−1,8.53×103] [1.16,6.32×103]

d [1.75,9.40×103] [5.21,6.35×103]

f [1.00×102,9.80×103] [1.00×102,6.40×103]

T A B L E 5 Computed spectral intervals and extreme
eigenvalues of 3 from Theorems 4 and 9 for observation
network d with 𝜎o=1.5 and 𝜎b=1

Eigenvalues of 3 Bounds from Th. 4 Bounds from Th. 9

[−1.93,−1.38×10−2] [−2.17,−5.83×10−3] [−5.10,−1.33×10−2]

[2.98×10−1,3.59] [2.37×10−1,3.81] [2.37×10−1,7.53]

T A B L E 6 Computed spectral intervals and
extreme eigenvalues of 2 from Theorems 6 and 10 for
observation network d with 𝜎o=1.5 and 𝜎b=1

Eigenvalues of 2 Bounds from Th. 6 Bounds from Th. 10

[−1.97,−1.39×10−2] [−2.33,−5.83×10−3] [−15.79,−1.33×10−2]

[3.00×10−1,3.51] [2.38×10−1,3.74] [2.37×10−1,7.51]

HTR−1H has eigenvalues that are equal to 𝜎−2
o = 102 and the largest singular value 𝜎max of L is less than 10. Hence, there

are p eigenvalues of 2 in the interval [−110,−90] and (N+1)n−p eigenvalues no further than 10 from zero.
The eigenvalues of 1 and their bounds presented in Figure 1(V) move away from zero when more observations are

used. This is as expected, because Theorem 7 holds for our choice of diagonal R. The variation of the bounds is explained
by the fact that with our choice of R values of 𝜏min and 𝜏max do not change, and 𝜃min and 𝜃max grow. Such behavior of the
upper bound agrees with Corollary 8. However, as can be seen in Table 4 the upper value of the intervals in Theorem 8
are too pessimistic.

Better eigenvalue clustering away from zero when more observations are used can speed up the convergence of iter-
ative solvers when solving the 1 × 1 block formulation. However, nothing definite can be said about the 3 × 3 block and
2 × 2 block formulations: the negative eigenvalues become more clustered, but the smallest positive eigenvalues approach
zero when new observations are introduced.

We also calculate the alternative eigenvalue bounds given in Theorems 9 and 10. With the choice of parameters and
observations considered in this section, the bounds given in these theorems are not as sharp as those in Theorems 4 and
6. However, this is not always the case, as is illustrated in Tables 5 and 6. Here, 𝜎o=1.5, 𝜎b=1 and the observation network
d is used.

4.3 Solving the systems

We solve the 3 × 3 block, 2 × 2 block, and 1 × 1 block systems with the coefficient matrices discussed in the previous
subsection, and the right-hand sides defined in (9), (11), and (13), respectively. The saddle point systems are solved with
MINRES and the symmetric positive definite systems are solved with CG. The relative residual at the jth iteration of
the iterative method is defined as ||rj||/||r0||, where ||⋅|| is the L2 norm and rj is the residual on iteration j. The iterative
method terminates after 400 iterations or when the relative residual reaches 10−4. The initial guess is taken to be the
zero vector.
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F I G U R E 2 Semilogarithmic plots of the relative residual of MINRES when solving the 3 × 3 block (I) and 2 × 2 block (II) systems, and
the relative residual of CG when solving the 1 × 1 block (III) system for different observation networks (a-f)

In Figure 2, we plot the relative residuals. Note that the residual reaches 10−4 in the fully observed case (observation
network f) when solving each of the systems and convergence is most rapid in this case. This is expected because of the
clustering of the eigenvalues. The convergence rates are similar for networks d and e, which is consistent with Figure 1.
The convergence of MINRES for the observation network a with a single observation is not explained by the spectra of
3 and 2. However, the convergence in other cases agrees with our eigenvalue analysis.

5 CONCLUSIONS

Weak constraint 4D-Var data assimilation requires the minimisation of a cost function in order to obtain an estimate of
the state of a dynamical system. Its solution can be approximated by solving a series of linear systems. We have analyzed
three different formulations of these systems, namely, the standard system with 1 × 1 block symmetric positive definite
coefficient matrix 1, a new system with a 2 × 2 block saddle point coefficient matrix 2, and the version with 3 × 3 block
saddle point coefficient matrix 3 of Fisher and Gürol.12 We have focused on the dependency of the coefficient matrices
on the number of observations.

We have found that the spectra of 3, 2, and 1 are sensitive to the number of observations and examined how they
change when new observations are added. The results hold with any choice of the blocks in 3, whereas we can only
make inference about the change of the spectra of 2 and 1 for uncorrelated observation errors (diagonal R). We have
shown that the negative eigenvalues of both 3 and 2 move away from zero or are unchanged when observations are
added. The smallest and largest positive eigenvalues of 2, as well as the smallest positive eigenvalue of 3, approach
zero or are unchanged, whereas the largest positive eigenvalue of 3 moves away from zero or is unchanged. The smallest
and largest eigenvalues of 1 move away from zero or are unchanged. The extreme eigenvalues may cause convergence
problems for Krylov subspace solvers, hence we may expect the small positive eigenvalues of 2 and 3 to cause these
issues when new observations are added. We summarise these results together with the properties of the three systems
in Table 7.
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T A B L E 7 A summary of the properties of the 3 × 3 block, 2 × 2 block, and 1 × 1 systems

3 2 1

Type Symmetric indefinite Symmetric indefinite Symmetric positive definite

Iterative solver MINRES/SYMMLQ MINRES/SYMMLQ CG

Order 2(N+1)n+p 2(N+1)n (N+1)n

D−1 needed No No Yes

R−1 needed No Yes Yes

Sequential matrix products None HTR−1H LTD−1L, HTR−1H

Eigenvalues that may move toward zero with
new observations

Smallest positive Positive* None*

Eigenvalues that may move away from zero
with new observations

Largest positive, negative Negative* All*

Note: *Applies to systems with diagonal R.

We have used the work of Rusten and Winther19 to determine the bounds for the spectrum of 3 and derived novel
bounds for the spectral intervals of the saddle point matrix 2 and the positive definite matrix 1. We have observed
that the change to the intervals due to new observations is consistent with the change of the extreme eigenvalues of the
matrices. Our numerical experiments agree with these findings. In general, the bounds for the saddle point matrices are
tight whereas the upper bounds for the positive definite matrix are too pessimistic.

Our numerical experiments show slow convergence, particularly with a few observations, and the need for precondi-
tioning is evident. Previous work on the 3 × 3 block saddle point system considered iteratively solving the problem when
inexact constraint preconditioners of Bergamaschi et al43 are used (see, Fisher and Gürol,12 Freitag and Green,14 Gratton
et al13). It was shown that such a preconditioning approach is not optimal and further research into effective precondi-
tioning is still an open question. Preconditioning may transform the coefficient matrix into a nonnormal one with GMRES
as an iterative solver of choice. Although the spectrum of a nonnormal matrix may not be enough to describe the con-
vergence of GMRES,44 Benzi et al18 claim that fast convergence often appears if the spectrum is clustered away from the
origin. Hence, a better understanding of the spectrum of 3, 2, and 1 may help in finding a suitable preconditioner for
these matrices. We suggest that including the information on observations coming from the observation error covariance
matrix R and the linearised observation operator H could be beneficial for preconditioning, given that the spectra of all
the considered matrices depend on the observations. The design of such preconditioners that are cheap to construct and
apply is an interesting area for future research.
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APPENDIX A. Bounds for individual eigenvalues of 3 and 2

We derive bounds for the individual eigenvalues of 3 and 2 (Theorems 13 and 14, respectively). First, we state two
theorems that are used in deriving these bounds. The notation of Table 1 is used.

Theorem 11 (See Theorem 3 in Silvester45). If A =
(

C E
F G

)
, C,E,F,G ∈ Rn×n, and FG = GF, then

det(A) = det(CG−EF).

Theorem 12 (Jordan-Wielandt Theorem, see Theorem 4.2 in Chapter 1 of Stewart and Sun36). Let

UHAV =
(
Σ 0
0 0

)
, Σ = diag(𝜎1,… ,𝜎n)

be the singular value decomposition of A ∈ Cm×n, m ≥ n. Then the eigenvalues of the matrix

C =
(

0 A
AH 0

)

are ±𝜎1,… ,±𝜎n, corresponding to the eigenvectors
(

ui
±vi

)
, i = 1,… ,n, where ui and vi are the ith columns of U and V,

respectively. C also has m−n zero eigenvalues with eigenvectors
(

ui
0

)
, i = n+1,… ,m.

Theorem 13. Let 𝜔i, i = 1,… ,(N+1)n+p be the ith value in {𝜓k,𝜌j|k = 1,… ,(N+1)n, j = 1,… ,p} (the set of eigenvalues of D
and R). Then the kth eigenvalue of 3 is bounded by

positive eigenvalues: 𝜔k − 𝜃max ≤ 𝛾k ≤ 𝜔k + 𝜃max, k = 1,… , (N + 1)n + p,
negative eigenvalues: − 𝜃max ≤ 𝛾k+(N+1)n+p < 0, k = 1,… , (N + 1)n.

Proof. We can write 3 as a sum of two symmetric matrices:

3 =

( D 0 L
0 R H

LT HT 0

)
=

( D 0 0
0 R 0
0 0 0

)
+

( 0 0 L
0 0 H

LT HT 0

)
= S3x3

D + S3x3
L .

The spectrum of S3x3
D is the union of the eigenvalues of D, R and zeros. By Theorem 12, the eigenvalues 𝜆 of

the indefinite matrix S3x3
L are the singular values of (LTHT) with plus and minus signs, thus 𝜆min = −𝜃max and

𝜆max = 𝜃max.
The result follows from applying Theorem 1 to the matrices S3x3

D and S3x3
L . ▪
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Theorem 14. The eigenvalues of 2 are bounded by

positive eigenvalues: 𝜓k − 𝜎max ≤ 𝜁k ≤ 𝜓k + 𝜎max, k = 1,… , (N + 1)n.
negative eigenvalues: − 𝜈k − 𝜎max ≤ 𝜁k+(N+1)n ≤ −𝜈k + 𝜎max, k = 1,… , (N + 1)n, (A1)

Proof. As in Theorem 13, we express 2 as a sum of two symmetric matrices

2 =
(

D 0
0 −HTR−1H

)
+
(

0 L
LT 0

)
= S2x2

D + S2x2
L .

The rest of the proof is analogous to that of Theorem 13. ▪

Corollary 9. If there are p < (N+1)n observations, (A1) in Theorem 14 becomes

−𝜎max ≤𝜁k+(N+1)n ≤ 0, k = 1,… , (N + 1)n − p,
−𝜈k − 𝜎max ≤𝜁k+2(N+1)n−p < −𝜈k + 𝜎max, k = 1,… , p.

Proof. The result follows from noticing that −HTR−1H has (N+1)n−p zero eigenvalues. ▪


