83 research outputs found

    Genome variations: Effects on the robustness of neuroevolved control for swarm robotics systems

    Get PDF
    Manual design of self-organized behavioral control for swarms of robots is a complex task. Neuroevolution has proved a viable alternative given its capacity to automatically synthesize controllers. In this paper, we introduce the concept of Genome Variations (GV) in the neuroevolution of behavioral control for robotic swarms. In an evolutionary setup with GV, a slight mutation is applied to the evolving neural network parameters before they are copied to the robots in a swarm. The genome variation is individual to each robot, thereby generating a slightly heterogeneous swarm. GV represents a novel approach to the evolution of robust behaviors, expected to generate more stable and robust individual controllers, and bene t swarm behaviors that can deal with small heterogeneities in the behavior of other members in the swarm. We conduct experiments using an aggregation task, and compare the evolved solutions to solutions evolved under ideal, noise-free conditions, and to solutions evolved with traditional sensor noise.info:eu-repo/semantics/acceptedVersio

    A Symbiotic Brain-Machine Interface through Value-Based Decision Making

    Get PDF
    BACKGROUND: In the development of Brain Machine Interfaces (BMIs), there is a great need to enable users to interact with changing environments during the activities of daily life. It is expected that the number and scope of the learning tasks encountered during interaction with the environment as well as the pattern of brain activity will vary over time. These conditions, in addition to neural reorganization, pose a challenge to decoding neural commands for BMIs. We have developed a new BMI framework in which a computational agent symbiotically decoded users' intended actions by utilizing both motor commands and goal information directly from the brain through a continuous Perception-Action-Reward Cycle (PARC). METHODOLOGY: The control architecture designed was based on Actor-Critic learning, which is a PARC-based reinforcement learning method. Our neurophysiology studies in rat models suggested that Nucleus Accumbens (NAcc) contained a rich representation of goal information in terms of predicting the probability of earning reward and it could be translated into an evaluative feedback for adaptation of the decoder with high precision. Simulated neural control experiments showed that the system was able to maintain high performance in decoding neural motor commands during novel tasks or in the presence of reorganization in the neural input. We then implanted a dual micro-wire array in the primary motor cortex (M1) and the NAcc of rat brain and implemented a full closed-loop system in which robot actions were decoded from the single unit activity in M1 based on an evaluative feedback that was estimated from NAcc. CONCLUSIONS: Our results suggest that adapting the BMI decoder with an evaluative feedback that is directly extracted from the brain is a possible solution to the problem of operating BMIs in changing environments with dynamic neural signals. During closed-loop control, the agent was able to solve a reaching task by capturing the action and reward interdependency in the brain

    Evolutionary design of soft-bodied animats with decentralized control

    Get PDF
    We show how a biologically inspired model of multicellular development combined with a simulated evolutionary process can be used to design the morphologies and controllers of soft-bodied virtual animats. An animat’s morphology is the result of a developmental process that starts from a single cell and goes through many cell divisions, during which cells interact via simple physical rules. Every cell contains the same genome, which encodes a gene regulatory network (GRN) controlling its behavior. After the developmental stage, locomotion emerges from the coordinated activity of the GRNs across the virtual robot body. Since cells act autonomously, the behavior of the animat is generated in a truly decentralized fashion. The movement of the animat is produced by the contraction and expansion of parts of the body, caused by the cells, and is simulated using a physics engine. Our system makes possible the evolution and development of animats that can run, swim, and actively navigate toward a target in a virtual environment

    Evolving Synaptic Plasticity with an Evolutionary Cellular Development Model

    Get PDF
    Since synaptic plasticity is regarded as a potential mechanism for memory formation and learning, there is growing interest in the study of its underlying mechanisms. Recently several evolutionary models of cellular development have been presented, but none have been shown to be able to evolve a range of biological synaptic plasticity regimes. In this paper we present a biologically plausible evolutionary cellular development model and test its ability to evolve different biological synaptic plasticity regimes. The core of the model is a genomic and proteomic regulation network which controls cells and their neurites in a 2D environment. The model has previously been shown to successfully evolve behaving organisms, enable gene related phenomena, and produce biological neural mechanisms such as temporal representations. Several experiments are described in which the model evolves different synaptic plasticity regimes using a direct fitness function. Other experiments examine the ability of the model to evolve simple plasticity regimes in a task -based fitness function environment. These results suggest that such evolutionary cellular development models have the potential to be used as a research tool for investigating the evolutionary aspects of synaptic plasticity and at the same time can serve as the basis for novel artificial computational systems

    A Systematic Survey of Mini-Proteins in Bacteria and Archaea

    Get PDF
    BACKGROUND: Mini-proteins, defined as polypeptides containing no more than 100 amino acids, are ubiquitous in prokaryotes and eukaryotes. They play significant roles in various biological processes, and their regulatory functions gradually attract the attentions of scientists. However, the functions of the majority of mini-proteins are still largely unknown due to the constraints of experimental methods and bioinformatic analysis. METHODOLOGY/PRINCIPAL FINDINGS: In this article, we extracted a total of 180,879 mini-proteins from the annotations of 532 sequenced genomes, including 491 strains of Bacteria and 41 strains of Archaea. The average proportion of mini-proteins among all genomic proteins is approximately 10.99%, but different strains exhibit remarkable fluctuations. These mini-proteins display two notable characteristics. First, the majority are species-specific proteins with an average proportion of 58.79% among six representative phyla. Second, an even larger proportion (70.03% among all strains) is hypothetical proteins. However, a fraction of highly conserved hypothetical proteins potentially play crucial roles in organisms. Among mini-proteins with known functions, it seems that regulatory and metabolic proteins are more abundant than essential structural proteins. Furthermore, domains in mini-proteins seem to have greater distributions in Bacteria than Eukarya. Analysis of the evolutionary progression of these domains reveals that they have diverged to new patterns from a single ancestor. CONCLUSIONS/SIGNIFICANCE: Mini-proteins are ubiquitous in bacterial and archaeal species and play significant roles in various functions. The number of mini-proteins in each genome displays remarkable fluctuation, likely resulting from the differential selective pressures that reflect the respective life-styles of the organisms. The answers to many questions surrounding mini-proteins remain elusive and need to be resolved experimentally

    Order in Spontaneous Behavior

    Get PDF
    Brains are usually described as input/output systems: they transform sensory input into motor output. However, the motor output of brains (behavior) is notoriously variable, even under identical sensory conditions. The question of whether this behavioral variability merely reflects residual deviations due to extrinsic random noise in such otherwise deterministic systems or an intrinsic, adaptive indeterminacy trait is central for the basic understanding of brain function. Instead of random noise, we find a fractal order (resembling Lévy flights) in the temporal structure of spontaneous flight maneuvers in tethered Drosophila fruit flies. Lévy-like probabilistic behavior patterns are evolutionarily conserved, suggesting a general neural mechanism underlying spontaneous behavior. Drosophila can produce these patterns endogenously, without any external cues. The fly's behavior is controlled by brain circuits which operate as a nonlinear system with unstable dynamics far from equilibrium. These findings suggest that both general models of brain function and autonomous agents ought to include biologically relevant nonlinear, endogenous behavior-initiating mechanisms if they strive to realistically simulate biological brains or out-compete other agents

    Modeling Planarian Regeneration: A Primer for Reverse-Engineering the Worm

    Get PDF
    A mechanistic understanding of robust self-assembly and repair capabilities of complex systems would have enormous implications for basic evolutionary developmental biology as well as for transformative applications in regenerative biomedicine and the engineering of highly fault-tolerant cybernetic systems. Molecular biologists are working to identify the pathways underlying the remarkable regenerative abilities of model species that perfectly regenerate limbs, brains, and other complex body parts. However, a profound disconnect remains between the deluge of high-resolution genetic and protein data on pathways required for regeneration, and the desired spatial, algorithmic models that show how self-monitoring and growth control arise from the synthesis of cellular activities. This barrier to progress in the understanding of morphogenetic controls may be breached by powerful techniques from the computational sciences—using non-traditional modeling approaches to reverse-engineer systems such as planaria: flatworms with a complex bodyplan and nervous system that are able to regenerate any body part after traumatic injury. Currently, the involvement of experts from outside of molecular genetics is hampered by the specialist literature of molecular developmental biology: impactful collaborations across such different fields require that review literature be available that presents the key functional capabilities of important biological model systems while abstracting away from the often irrelevant and confusing details of specific genes and proteins. To facilitate modeling efforts by computer scientists, physicists, engineers, and mathematicians, we present a different kind of review of planarian regeneration. Focusing on the main patterning properties of this system, we review what is known about the signal exchanges that occur during regenerative repair in planaria and the cellular mechanisms that are thought to underlie them. By establishing an engineering-like style for reviews of the molecular developmental biology of biomedically important model systems, significant fresh insights and quantitative computational models will be developed by new collaborations between biology and the information sciences
    • …
    corecore