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Directed Locomotion for Modular Robots
with Evolvable Morphologies
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and A. E. Eiben

Department of Computer Science, VU University Amsterdam,
Amsterdam, The Netherlands
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Abstract. Morphologically evolving robot systems need to include a
learning period right after ‘birth’ to acquire a controller that fits the
newly created body. In this paper, we investigate learning one skill in
particular: walking in a given direction. To this end, we apply the Hyper-
NEAT algorithm guided by a fitness function that balances the distance
travelled in a direction and the deviation between the desired and the
actually travelled directions. We validate this method on a variety of
modular robots with different shapes and sizes and observe that the best
controllers produce trajectories that accurately follow the correct direc-
tion and reach a considerable distance in the given test interval.

Keywords: Evolutionary robotics · Evolvable morphologies
Modular robots · Gait learning · Directed locomotion

1 Introduction

While it can already be hard to design robots for known environments, it is
considerably harder for (partially) unknown environments, like the deep sea or
Venus. In unknown environments, robots should be able to respond to the cir-
cumstances they encounter. The problem with this however, is that there is no
way to predict what the robots will encounter. Therefore, in such environments,
it would be highly useful to have robots that evolve over time, changing their
controllers and their morphologies to better adapt to the environment.

The field that is concerned with such evolving robots is Evolutionary Robotics
[6,10]. To date, the research community has mainly been focussing on evolving
only the controllers in fixed robot bodies. The evolution of morphologies has
received much less attention even though it has been observed that adequate
robot behaviour depends on both the body and the brain [3,4,30]. To unlock
the full potential of the evolutionary approach one should apply it to both bodies
and brains. At present, we can only do this in simulation, as there are still key
obstacles to overcome for evolving robots in real hardware [12,13,21].

One of the challenges inherent to evolving robot bodies – be it simulated
or real – is rooted in the fact that ‘robot children’ are random combinations
c© Springer Nature Switzerland AG 2018
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of the bodies and brains of their parents. In general it cannot be assumed that
simply recombining the parents’ controllers results in a controller that fits the
recombined body. Hence, a ‘robot child’ must learn how to control its body, not
unlike a little calf that spends the first hour of its life learning to walk. It is
vital that the learning method is general enough to work for a large variety of
morphologies and fast enough to work within practical time intervals.

A generic architecture of robot systems, where both morphologies and con-
trollers undergo evolution has been introduced recently [11,14]. The underlying
model, called the Triangle of Life (ToL), describes a life cycle that runs from
conception (being conceived) to conception (conceiving offspring) through three
principal stages: Birth, Infancy, and Mature Life. Within this scheme, the learn-
to-control-your-own-body problem can be positioned in the Infancy phase, where
a newborn robot acquires the basic sensory-motor skills. Formerly, we have inves-
tigated the most elementary case: gait learning [21–23,35]. However, although
gait learning is a popular problem in evolutionary robotics, in practice we are
not really interested in a robot that just walks without purpose. For most cases,
a robot has to move in a given direction, e.g., to move towards a destination.
Here we focus on the task of directed locomotion, where the robot must follow
a given direction, e.g. “go left”. Our specific research goals are the following:

1. Develop a dedicated evaluation function that balances the distance travelled
in a direction and the deviation between the desired and the actually travelled
directions.

2. Provide a method to learn a controller for directed locomotion in different
modular robots.

3. Evaluate the method on a test suite consisting of robots with different shapes
and sizes.

2 Related Work

The design of locomotion for modular robots is a difficult task. Several
approaches based on various types of controllers and algorithms for locomo-
tion of robots have proposed in [1,32]. An early approach is based on gait
control tables that in essence are a simple cyclic finite state machines [5]. A
second major approach is based on neural networks, for instance, HyperNEAT.
In previous work we have implemented evolutionary controllers for locomotion
in modular robots [16,35] using HyperNEAT. Other studies also have shown
that HyperNEAT can evolve the good controllers for the efficient gaits of a
robot [8,36]. Other successful approaches that have been extensively investi-
gated for robot locomotion are based on Central Pattern Generators (CPGs) [19].
CPGs are neural networks that can produce rhythmic patterned outputs without
rhythmic sensory or central input [17]. The use CPG-based controllers reduces
the dimensionality of the locomotion control problem while remaining flexible
enough to continuously adjust velocity, direction, and type of gait depending on
the environmental context [20]. This technique has been shown to produce well-
performing and stable gaits for modular robots [24,25,27]. Last, an alternative
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approach based on machine learning for adaptive locomotion was proposed by
Cully et al., to account for changes in body properties [9].

Although there are extensive existing studies on the locomotion of robots,
most of them focus on the controllers in fixed robot bodies for gait learning, and
only the research described in [24,32] tested on multiple shapes. Our own previ-
ous work [21–23,35] focussed on gait learning for modular robots with evolvable
morphologies. For directed locomotion, most related studies with robots concern
the control of vertebrates with fixed shapes, such as a bipeds. The different neural
control systems involved in directed vertebrates locomotion are reviewed in [15].
A CPG approach based on phase oscillators towards directed biped locomotion
is presented in [28]. A special snake-like robot with screw-drive units is presented
in [7] for directed locomotion using a reinforcement learning approach. There are
few studies on the directed locomotion of the modular robots, and they focus on
fixed morphologies or the special structures.

3 Experimental Set-Up

In this study, the controllers for all modular robots are learned in an infinite
plane environment [18], using our Gazebo-based1 custom simulator Revolve.

3.1 Robots

Our robot design is based on RoboGen [2]. We use a subset of those 3D-printable
components: fixed bricks, a core component, and active hinges. The fixed bricks
are cubic components with slots that can attach other components. The core
component holds a controller board. It also has slots on its four lateral faces to
attach other components. The active hinge is a joint moved by a servo motor.
It can attach to other components by inserting its lateral faces into the slots of
these other components. Each robot’s genotype describes its layout and consists
of a tree structure with the root node representing a core module from which
further components branch out. These models are used in simulation, but also
could be used for 3D printing and the construction of the real robots.

As a test suite we chose nine robots in three different shapes and sizes, to
examine the generality and scalability of our method, see Fig. 1. We refer to these
three shapes as spider, gecko, and baby. The ‘baby’ robots were created through
recombination of the ‘spider’s’ and ‘gecko’s’ [22] morphological genotypes.

3.2 Controllers

Controllers based on Central Pattern Generators (CPGs) have been proven to
perform well for modular robots. In this work, we use CPGs whose main compo-
nents are differential oscillators. Each oscillator is defined by two neurons that

1 http://gazebosim.org/.

http://gazebosim.org/
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Fig. 1. Images of the used robots. Note that the top leg of gecko17 and babyC are
different; babyC has one more active hinge where gecko17 has a brick.

Fig. 2. Controller concept used in the robots. In (b) the rectangular shapes indicate
passive body parts, the circles show active hinges, each with their own differential
oscillator, and the arrows indicate the connections between the oscillators for the body
shown in the top-left panel of Fig. 1.

are recursively connected as shown in Fig. 2a. These generate oscillatory pat-
terns by calculating their activation levels x and y according to the following
differential equation:

ẋ = wyxy + biasx

ẏ = wxyx + biasy
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with wxy and wyx denoting the weights of the connections between the neurons;
biasx and biasy are parameters of the neurons. If wyx and wxy have different
signs the activation of the neurons x and y is periodic and bounded.

We used Compositional Pattern-Producing Networks (CPPNs) to generate
the weights of the CPG controller. CPPNs are a variation of artificial neural
networks (ANNs) that have an architecture whose evolution is guided by Hyper-
NEAT algorithm [33], so that the substrate network’s performance is optimised
[34]. The CPG nodes are positioned in a three-dimensional space. Such modular
differentiation allows specialisation of the active hinge’s movements depending
on its relative position in the robot. The hinge coordinates are obtained from a
top-down view of the robot body. Thus, two coordinates of a node in the CPG
controller correspond to the relative position of the active hinge it is associated
with. The third coordinate depends on the role of the node in the CPG network:
output nodes have a value of 0 and differential nodes have values of 1 for x
and −1 for y nodes. Therefore the CPPNs have six inputs denoting the coordi-
nates of a source and a target node when querying connection weights or just
the position of one node when obtaining node parameters with the other three
inputs being initialised as zero. The CPPNs have three outputs: the weight of
the connection from source to target as well as the bias and gain values when
calculating parameters for a node.

The CPPNs return the connection weights for the CPG network that in turn
constitutes the controller that induces the behaviour for directed locomotion.
The behaviour is evaluated by a fitness function (Sect. 4) and the fitness value
is fed to HyperNEAT which in turn generates new CPPNs. The CPPNs evolve
until a termination condition is triggered; in our experiments this is reaching a
maximum number of generations.

3.3 Experimental Parameters

An initial population of 20 CPPNs are randomly generated in the first gener-
ation. Each CPPN generates the weights of a CPG network whose topology is
based on a robot’s morphology. The fitness of the CPG is evaluated in Revolve
for a given evaluation time. We set this evaluation time to be 60 s to balance com-
puting time and accurately evaluating a complex task as directed locomotion.
We found this 60 s to be a suitable value empirically. Each EA run is terminated
after 300 generations, that is, 300 ∗ 20 = 6000 fitness evaluations – this amounts
to 100 h of (simulated) time.

The robots used in the experiments include three small robots (spider9,
gecko7, babyA), three medium size robots (spider13, gecko12, babyB) and three
large robots (spider17, gecko17, babyC). For each robot we tested the EA on
five target directions (−40◦, −20◦, 0◦, 20◦, and 40◦ relative to the robot) to
simulate the robot’s limited field of view in the real-world. This resulted in 45
test cases. For each test case the EA runs were repeated five times. All together,
we performed 225 HyperNEAT runs per 100 h of simulated time each (Table 1).
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Table 1. Experimental parameters

Parameter Value Description

Population size 20 Number of individuals per generation

Generations 300 Termination condition for each run

Tournament size 4 Number of individuals used in tournament selection

Mutation 0.8 Probability of mutation for individuals

Evaluation time 60 Duration of the test period per fitness evaluation in seconds

4 Fitness Function

In this section, we propose a fitness function for directed locomotion and illus-
trate how the performance of a controller is evaluated. We provide a step-by-step
derivation that leads to our final fitness function shown in Eq. 5.

β1β0
T0

T1

x

y

p(xp, yp)

l1l0

(x0, y0)

(x1, y1)
Tra.2

Tra.1

Fig. 3. Illustration of the fitness calculation for each evaluation. T0 is the starting
position of the robot, with coordinate (x0, y0). T1 is the end position of the robot, with
coordinate (x1, y1). l0 is a given target direction. The point p is the projected point on
the target direction l0. The red lines Tra.1 and Tra.2 show two different trajectories
of the robot. (Color figure online)

The scenario for an evaluation in our experiments is illustrated in Fig. 3. We
can collect the following measurements from the Revolve simulator:

1. c0 = (x0, y0) is the coordinate of the core component of the robot at the start
of the simulation, i.e., time T0.

2. c1 = (x1, y1) is the coordinate of the core component of the robot at the end
of the simulation, T1.

3. The orientation of the robot in T0 and T1.
4. The length of the trajectory that the robot travelled from c0 to c1

The target direction, β0, is an angle with respect to the initial orientation
of the robot at T0. In Fig. 3 we drew lines in the target direction, l0, and the
line through c0 and c1, l1. The angle between l1 and x−axis, β1 = atan2((y1 −
y0), (x1 − x0)), is the actual direction of the robot displacement between T0

and T1.
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The absolute intersection angle between l0 and l1, δ, is the deviation between
the actual direction of the robot locomotion and the target direction. It can be
calculated as:

δ =

{
2 ∗ π − |β1 − β0| (|β1 − β0| > π)
|β1 − β0| (|β1 − β0| ≤ π)

(1)

Note that we pick the smallest angle between the two lines. To perform well
on a directed locomotion task, δ should be as small as possible. However, just
minimizing δ is not enough to for successful directed locomotion.

In addition to moving in the right direction, i.e., minimizing δ, the robot
should move as far as possible in the target direction. Therefore, we calculate
distance travelled by the robot in the target direction by projecting the final
position at T1, (x1, y1), onto l0; we denote this point as p = (xp, yp). The distance
travelled is then

distProjection = sign |p − c0|, (2)

where |p − c0| is the Euclidean distance between p and c0, and sign = 1 if
δ < π

2 (noting that δ is an absolute value) and sign = −1 otherwise. The
distProjection is thus negative when the robot moves in the opposite direction.

To further penalize deviating from the target direction we calculate the dis-
tance between (x1, y1) and (xp, yp):

penalty = fp ∗ |c1 − p|, (3)

where |c1 − p| is the Euclidean distance between c1 and its projection on the
target direction line l0, p. fp is a constant scalar penalty factor, determining the
relative importance of the deviation. In our experiments we use fp = 0.01.

A naive version of the fitness would be:

fitnessPro =
distProjection

δ + 1
− penalty, (4)

where (δ + 1) aims to guarantee that the denominator does not equal zero.
While fitnessPro is proportional to distProjection, and inversely propor-

tional to δ and penalty, this does not yet entirely express all desirable features
of a good trajectory for the robot. Specifically, we not only care about the final
position of the robot, but also about how the robot moves to the end point. To
illustrate this please compare the trajectories marked Tra.1 and Tra.2 in Fig. 3.
Although the robot has the same starting and end position for both trajectories,
Tra.1 is a more efficient way of moving between the two points. Therefore, we
would want the controller of Tra.1 to have a higher fitness than that of Tra.2. In
general, we aim to evolve a controller to move from start to finish as efficiently as
possible, i.e., in a straight line. Therefore, we make the fitness function inversely
proportional to the length of the trajectory (noted as lengthTra) that the robot
performs. We thus propose the following fitness function to measure the perfor-
mance of controllers for directed locomotion:

fitness =
|distProjection|
lengthTra + ε

∗ (
distProjection

δ + 1
− penalty) (5)
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Fig. 4. Deviation (δ) from the target direction during the learning process (Color figure
online).

where ε is an infinitesimal constant. The fitness function is proportional to
distProjection, but inversely proportional to lengthTra and δ. That is, the fit-
ness function rewards higher speeds in the target direction (as measured through
distProjection), and punishes the length of trajectories, lengthTra, and devia-
tions from the target directions.

5 Experimental Results

Inspecting the usual fitness vs. time curves (omitted here because of space lim-
itations) we observe that the controllers of small size robots have the highest
average fitness. The controllers of medium and large size robots reach signifi-
cantly lower values. This is in line with our previous work [22] suggesting that
the parameter settings for the larger robots are more difficult to learn, irrespec-
tive of the algorithm, such as HyperNEAT or RL PoWER.
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An important metric for directed locomotion is the deviation from the target
direction, δ. The progression of the learning process is shown in Fig. 4 for each of
the nine robots. Each sub-figure shows the average δ for the 20 controllers in a
population over five repetitions. The five target directions are represented by the
colours. These curves show that in all cases δ gradually decreases. Interestingly,
the δ of small size robots is higher than for the larger robots. This means that
small size robots are easier to evolve for speed (as they have higher fitness), but
do worse in terms of deviation. Similar results were shown in our previous work
[22]. We hypothesize that this is because larger robots have more joints, they
have more flexibility, and can control their direction more precisely.

To see the outcome of the learning process we select the best controllers from
the 30000 controllers (6000 evaluations per run, 5 repetitions) for each robot in
each target direction and inspect the trajectories these controllers induce. The
best three trajectories for each robot and direction are shown in Fig. 5.
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Fig. 5. The best three trajectories for each robot and each direction. The black arrows
show the five target directions.
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In general, the trajectories follow the target directions well. For example,
the trajectories of spider9 are almost exactly on the target directions and they
display faster speed than other robots. Because maximizing the distance in the
target directions, distProjection, is rewarded in the fitness function, as well as
minimizing the deviation from the target directions, evolution can lead to differ-
ent trade-offs between these two preferences. For example, one of the trajectories
(purple point-line) for −40◦ of spider13 deviates quite far from the target direc-
tion but travels a long distance, while the other trajectories for this robot and
direction get less far but stick more closely to the target direction. In addition,
although the trajectories (black point-line) for 0◦ of babyA have high values for
lengthPath, and thus receive a punishment in the fitness function for the devi-
ation from the straight line in the target direction of 0◦, they have top fitness
because of the high speed (distProjection) and a good final δ. The small size
robots have the better trajectories, especially in terms of speed. The medium size
robots have the second-best trajectories. The large size robots also have good
trajectories but not as good as the small and medium size robots, especially in
terms of speed. In summary, we conclude that using our method, successful con-
trollers can be evolved for directed locomotion for modular robots with evolvable
morphologies. Furthermore, the small-sized robots have the better performance
for directed locomotion, especially in terms of speed in the target direction.

6 Concluding Remarks

We addressed the problem of learning sensory-motor skills in morphologically
evolvable robot systems where the body of newborn robots can be a random
combination of the bodies of the parents. In particular, we presented a method
to learn good robot controllers for directed locomotion based on HyperNEAT and
a new fitness function that balances the distance travelled in a desired direction
and the angle between the desired direction and the direction actually travelled.
We tested this method on nine modular robots for five different target direc-
tions and found that the robots acquired good controllers in all cases. From the
resulting trajectories it is apparent that our fitness function adequately balances
the speed and direction of the robots.

These experiments were, while well-performing, not too efficient, as the learn-
ing speed of HyperNEAT is not very high. Currently we are comparing Hyper-
NEAT to other methods for training the controllers, such as reinforcement learn-
ing [26] and Bayesian optimisation [29]. Furthermore, we aim to investigate which
other trade-offs between deviation from the target direction and the speed exist
by using a vector-valued, i.e., multi-objective, rather than a scalar fitness func-
tion [31]. Finally, we aim to validate our results by replicating the experiments
in real hardware and consider more scenarios and other skills.
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