40 research outputs found

    Does Genetic Diversity Predict Health in Humans?

    Get PDF
    Genetic diversity, especially at genes important for immune functioning within the Major Histocompatibility Complex (MHC), has been associated with fitness-related traits, including disease resistance, in many species. Recently, genetic diversity has been associated with mate preferences in humans. Here we asked whether these preferences are adaptive in terms of obtaining healthier mates. We investigated whether genetic diversity (heterozygosity and standardized mean d2) at MHC and nonMHC microsatellite loci, predicted health in 153 individuals. Individuals with greater allelic diversity (d2) at nonMHC loci and at one MHC locus, linked to HLA-DRB1, reported fewer symptoms over a four-month period than individuals with lower d2. In contrast, there were no associations between MHC or nonMHC heterozygosity and health. NonMHC-d2 has previously been found to predict male preferences for female faces. Thus, the current findings suggest that nonMHC diversity may play a role in both natural and sexual selection acting on human populations

    Developmental Stability Covaries with Genome-Wide and Single-Locus Heterozygosity in House Sparrows

    Get PDF
    Fluctuating asymmetry (FA), a measure of developmental instability, has been hypothesized to increase with genetic stress. Despite numerous studies providing empirical evidence for associations between FA and genome-wide properties such as multi-locus heterozygosity, support for single-locus effects remains scant. Here we test if, and to what extent, FA co-varies with single- and multilocus markers of genetic diversity in house sparrow (Passer domesticus) populations along an urban gradient. In line with theoretical expectations, FA was inversely correlated with genetic diversity estimated at genome level. However, this relationship was largely driven by variation at a single key locus. Contrary to our expectations, relationships between FA and genetic diversity were not stronger in individuals from urban populations that experience higher nutritional stress. We conclude that loss of genetic diversity adversely affects developmental stability in P. domesticus, and more generally, that the molecular basis of developmental stability may involve complex interactions between local and genome-wide effects. Further study on the relative effects of single-locus and genome-wide effects on the developmental stability of populations with different genetic properties is therefore needed

    In Vitro vs In Silico Detected SNPs for the Development of a Genotyping Array: What Can We Learn from a Non-Model Species?

    Get PDF
    Background: There is considerable interest in the high-throughput discovery and genotyping of single nucleotide polymorphisms (SNPs) to accelerate genetic mapping and enable association studies. This study provides an assessment of EST-derived and resequencing-derived SNP quality in maritime pine (Pinus pinaster Ait.), a conifer characterized by a huge genome size (~23.8 Gb/C). [br/] Methodology/Principal Findings: A 384-SNPs GoldenGate genotyping array was built from i/ 184 SNPs originally detected in a set of 40 re-sequenced candidate genes (in vitro SNPs), chosen on the basis of functionality scores, presence of neighboring polymorphisms, minor allele frequencies and linkage disequilibrium and ii/ 200 SNPs screened from ESTs (in silico SNPs) selected based on the number of ESTs used for SNP detection, the SNP minor allele frequency and the quality of SNP flanking sequences. The global success rate of the assay was 66.9%, and a conversion rate (considering only polymorphic SNPs) of 51% was achieved. In vitro SNPs showed significantly higher genotyping-success and conversion rates than in silico SNPs (+11.5% and +18.5%, respectively). The reproducibility was 100%, and the genotyping error rate very low (0.54%, dropping down to 0.06% when removing four SNPs showing elevated error rates). [br/] Conclusions/Significance: This study demonstrates that ESTs provide a resource for SNP identification in non-model species, which do not require any additional bench work and little bio-informatics analysis. However, the time and cost benefits of in silico SNPs are counterbalanced by a lower conversion rate than in vitro SNPs. This drawback is acceptable for population-based experiments, but could be dramatic in experiments involving samples from narrow genetic backgrounds. In addition, we showed that both the visual inspection of genotyping clusters and the estimation of a per SNP error rate should help identify markers that are not suitable to the GoldenGate technology in species characterized by a large and complex genome

    Measurement of the Absolute Magnitude and Time Courses of Mitochondrial Membrane Potential in Primary and Clonal Pancreatic Beta-Cells

    Get PDF
    The aim of this study was to simplify, improve and validate quantitative measurement of the mitochondrial membrane potential (ΔψM) in pancreatic β-cells. This built on our previously introduced calculation of the absolute magnitude of ΔψM in intact cells, using time-lapse imaging of the non-quench mode fluorescence of tetramethylrhodamine methyl ester and a bis-oxonol plasma membrane potential (ΔψP) indicator. ΔψM is a central mediator of glucose-stimulated insulin secretion in pancreatic β-cells. ΔψM is at the crossroads of cellular energy production and demand, therefore precise assay of its magnitude is a valuable tool to study how these processes interplay in insulin secretion. Dispersed islet cell cultures allowed cell type-specific, single-cell observations of cell-to-cell heterogeneity of ΔψM and ΔψP. Glucose addition caused hyperpolarization of ΔψM and depolarization of ΔψP. The hyperpolarization was a monophasic step increase, even in cells where the ΔψP depolarization was biphasic. The biphasic response of ΔψP was associated with a larger hyperpolarization of ΔψM than the monophasic response. Analysis of the relationships between ΔψP and ΔψM revealed that primary dispersed β-cells responded to glucose heterogeneously, driven by variable activation of energy metabolism. Sensitivity analysis of the calibration was consistent with β-cells having substantial cell-to-cell variations in amounts of mitochondria, and this was predicted not to impair the accuracy of determinations of relative changes in ΔψM and ΔψP. Finally, we demonstrate a significant problem with using an alternative ΔψM probe, rhodamine 123. In glucose-stimulated and oligomycin-inhibited β-cells the principles of the rhodamine 123 assay were breached, resulting in misleading conclusion

    Towards a Generalized Approach in Clinical Control Systems

    No full text

    Expert control of the arterial blood pressure during surgery

    No full text
    During and after many surgical procedures the patient's arterial blood pressure must be artificially decreased to a lower than normal level. Although there are alternatives, infusion of the drug sodium nitroprusside (SNP) is frequently the preferred technique to achieve this controlled hypotension. The fast action of the drug and the danger of a too low pressure make manual control of the SNP infusion flow rate, even if done by an expert, a difficult and demanding task. This is mainly due to an occasional large unpredictable variability over time of the patient's sensitivity to SNP, and to the fact that a multitude of other factors also influence the arterial pressure. Due to these and several other causes, current automatic controllers cannot handle all cases equally well. A new expert system based SNP controller [3] was designed to perform well for all patients, regardless of their characteristics. It monitors and adjusts its own performance, employing a number of heuristics derived from a careful study of the properties of the arterial pressure signal, the effects of SNP and other clinical provocations on the arterial pressure, and the ways in which expert clinicians manually manage the SNP infusion. Expert systems technology allows the new controller to access and employ this type ofexpert medical knowledge, resulting in expert-level performance. The controller was tested on 30 patients undergoing cardiac surgery, both before, during and after bypass. It was safe, needed little attention, and performed well in all cases

    Expert control of the arterial blood pressure during surgery

    No full text

    Adaptive Modeling and Control of Drug Delivery Systems Using Generalized Fuzzy Neural Networks

    No full text
    This book collects a number of representative methods on sensory evaluation

    Marker-based investigation of inbreeding depression in the endangered species Brassica insularis

    No full text
    Correspondance: [email protected] audienceVarious methods have been proposed to estimate inbreeding depression and to assess its consequences for natural populations. As an alternative to controlled crosses, the use of molecular markers has allowed direct investigation of inbreeding depression in natural populations, but usually suffers from low statistical power. Here, we investigated the effect of inbreeding depression on survival in two populations of the rare species Brassica insularis, using both controlled crosses and a marker-based approach. We compare the respective merits of the two approaches for studying inbreeding depression. We also use information from the molecular markers to dissect in detail patterns of inbreeding depression in this species. A posteriori, we find that combining the approaches was not necessary to obtain simple point estimates of inbreeding depression. However, using molecular markers may give insight into the genetic basis of inbreeding depression, such as the occurrence of epistatic interactions among deleterious alleles or purging
    corecore