5,609 research outputs found

    Unusual Formation of Point-Defect Complexes in the Ultrawide-Band-Gap Semiconductor β-Ga2 O3

    Get PDF
    Understanding the unique properties of ultra-wide band gap semiconductors requires detailed information about the exact nature of point defects and their role in determining the properties. Here, we report the first direct microscopic observation of an unusual formation of point defect complexes within the atomic-scale structure of β-Ga2O3 using high resolution scanning transmission electron microscopy (STEM). Each complex involves one cation interstitial atom paired with two cation vacancies. These divacancy-interstitial complexes correlate directly with structures obtained by density functional theory, which predicts them to be compensating acceptors in β-Ga2O3. This prediction is confirmed by a comparison between STEM data and deep level optical spectroscopy results, which reveals that these complexes correspond to a deep trap within the band gap, and that the development of the complexes is facilitated by Sn doping through increased vacancy concentration. These findings provide new insight on this emerging material's unique response to the incorporation of impurities that can critically influence their properties

    The Millimeter Astronomy Legacy Team 90 GHz Survey (MALT90) and ALMA

    Get PDF
    ALMA will revolutionize our understanding of star formation within our galaxy, but before we can use ALMA we need to know where to look. The Millimeter Astronomy Legacy Team 90 GHz (MALT90) Survey is a large international project to map the molecular line emission of over 2,000 dense clumps in the Galactic plane. MALT90 serves as a pathfinder for ALMA, providing a large public database of dense molecular clumps associated with high-mass star formation. In this proceedings, we describe the survey parameters and share early science highlights from the survey, including (1) a comparison between galactic and extragalactic star formation relations, (2) chemical trends in MALT90 clumps, (3) the distribution of high-mass star formation in the Milky Way, and (4) a discussion of the Brick, the target of successful ALMA Cycle 0 and Cycle 1 proposals

    Contrast in Terahertz Images of Archival Documents—Part I: Influence of the Optical Parameters from the Ink and Support

    Get PDF
    This study aims to objectively inform curators when terahertz time-domain (TD) imaging set in reflection mode is likely to give well-contrasted images of inscriptions in a complex archival document and is a useful non-invasive alternative to current digitisation processes. To this end, the dispersive refractive indices and absorption coefficients from various archival materials are assessed and their influence on contrast in terahertz images from historical documents is explored. Sepia ink and inks produced with bistre or verdigris mixed with a solution of Arabic gum or rabbit skin glue are unlikely to lead to well-contrasted images. However, dispersions of bone black, ivory black, iron gall ink, malachite, lapis lazuli, minium and vermilion are likely to lead to well-contrasted images. Inscriptions written with lamp black, carbon black and graphite give the best imaging results. The characteristic spectral signatures from iron gall ink, minium and vermilion pellets between 5 and 100 cm−1 relate to a ringing effect at late collection times in TD waveforms transmitted through these pellets. The same ringing effect can be probed in waveforms reflected from iron gall, minium and vermilion ink deposits at the surface of a document. Since TD waveforms collected for each scanning pixel can be Fourier-transformed into spectral information, terahertz TD imaging in reflection mode can serve as a hyperspectral imaging tool. However, chemical recognition and mapping of the ink is currently limited by the fact that the morphology of the document influences more the terahertz spectral response of the document than the resonant behaviour of the ink

    Anomaly and a QCD-like phase diagram with massive bosonic baryons

    Full text link
    We study a strongly coupled Z2Z_2 lattice gauge theory with two flavors of quarks, invariant under an exact SU(2)×SU(2)×UA(1)×UB(1)\mathrm{SU}(2)\times \mathrm{SU}(2) \times \mathrm{U}_A(1) \times \mathrm{U}_B(1) symmetry which is the same as QCD with two flavors of quarks without an anomaly. The model also contains a coupling that can be used to break the UA(1)\mathrm{U}_A(1) symmetry and thus mimic the QCD anomaly. At low temperatures TT and small baryon chemical potential μB\mu_B the model contains massless pions and massive bosonic baryons similar to QCD with an even number of colors. In this work we study the TμBT-\mu_B phase diagram of the model and show that it contains three phases : (1) A chirally broken phase at low TT and μB\mu_B, (2) a chirally symmetric baryon superfluid phase at low TT and high μB\mu_B, and (3) a symmetric phase at high TT. We find that the nature of the finite temperature chiral phase transition and in particular the location of the tricritical point that seperates the first order line from the second order line is affected significantly by the anomaly.Comment: 22 pages, 16 figures, 5 tables, references adde

    Spatial and coherence cues based time-frequency masking for binaural reverberant speech separation

    Get PDF
    ABSTRACT Most of the binaural source separation algorithms only consider the dissimilarities between the recorded mixtures such as interaural phase and level differences (IPD, ILD) to classify and assign the time-frequency (T-F) regions of the mixture spectrograms to each source. However, in this paper we show that the coherence between the left and right recordings can provide extra information to label the T-F units from the sources. This also reduces the effect of reverberation which contains random reflections from different directions showing low correlation between the sensors. Our algorithm assigns the T-F regions into original sources based on weighted combination of IPD, ILD, the observation vectors models and the estimated interaural coherence (IC) between the left and right recordings. The binaural room impulse responses measured in four rooms with various acoustic conditions have been used to evaluate the performance of the proposed method which shows an improvement of more than 1.4 dB in signalto-distortion ratio (SDR) in room D with T 60 = 0.89 s over the state-of-the-art algorithms

    Tracing the Conversion of Gas into Stars in Young Massive Cluster Progenitors

    Get PDF
    Whilst young massive clusters (YMCs; MM \gtrsim 104^{4} M_{\odot}, age \lesssim 100 Myr) have been identified in significant numbers, their progenitor gas clouds have eluded detection. Recently, four extreme molecular clouds residing within 200 pc of the Galactic centre have been identified as having the properties thought necessary to form YMCs. Here we utilise far-IR continuum data from the Herschel Infrared Galactic Plane Survey (HiGAL) and millimetre spectral line data from the Millimetre Astronomy Legacy Team 90 GHz Survey (MALT90) to determine their global physical and kinematic structure. We derive their masses, dust temperatures and radii and use virial analysis to conclude that they are all likely gravitationally bound -- confirming that they are likely YMC progenitors. We then compare the density profiles of these clouds to those of the gas and stellar components of the Sagittarius B2 Main and North proto-clusters and the stellar distribution of the Arches YMC. We find that even in these clouds -- the most massive and dense quiescent clouds in the Galaxy -- the gas is not compact enough to form an Arches-like (MM = 2x104^{4} M_{\odot}, Reff_{eff} = 0.4 pc) stellar distribution. Further dynamical processes would be required to condense the resultant population, indicating that the mass becomes more centrally concentrated as the (proto)-cluster evolves. These results suggest that YMC formation may proceed hierarchically rather than through monolithic collapse

    Non-invasive MRI biomarkers for the early assessment of iron overload in a humanized mouse model of β-thalassemia

    Get PDF
    β-thalassemia (βT) is a genetic blood disorder causing profound and life threatening anemia. Current clinical management of βT is a lifelong dependence on regular blood transfusions, a consequence of which is systemic iron overload leading to acute heart failure. Recent developments in gene and chelation therapy give hope of better prognosis for patients, but successful translation to clinical practice is hindered by the lack of thorough preclinical testing using representative animal models and clinically relevant quantitative biomarkers. Here we demonstrate a quantitative and non-invasive preclinical Magnetic Resonance Imaging (MRI) platform for the assessment of βT in the γβ(0)/γβ(A) humanized mouse model of βT. Changes in the quantitative MRI relaxation times as well as severe splenomegaly were observed in the heart, liver and spleen in βT. These data showed high sensitivity to iron overload and a strong relationship between quantitative MRI relaxation times and hepatic iron content. Importantly these changes preceded the onset of iron overload cardiomyopathy, providing an early biomarker of disease progression. This work demonstrates that multiparametric MRI is a powerful tool for the assessment of preclinical βT, providing sensitive and quantitative monitoring of tissue iron sequestration and cardiac dysfunction- parameters essential for the preclinical development of new therapeutics

    How do we speak about algorithms and algorithmic media futures? Using vignettes and scenarios in a citizen council on data-driven media personalisation

    Get PDF
    ‘New’ media and algorithmic rules underlying many emerging technologies present particular challenges in fieldwork, because the opacity of their design, and, sometimes, their real or perceived status as ‘not quite here yet’ – makes speaking about these challenging in the field. In this article, we use insights from a three-stage citizens council investigating citizens’ views on developments in data-driven media personalisation to reflect on the potentials of using future-orientated vignettes and scenarios in data collection on user experiences, expectations and the ethics of algorithms. We present the possibilities and potentials of using vignettes as part of a data collection approach in user-centric algorithm studies which invites users’ contextual experiences of algorithms but also enables more normative reflections on what good looks like in contemporary datafied societies

    SemEHR:A general-purpose semantic search system to surface semantic data from clinical notes for tailored care, trial recruitment, and clinical research

    Get PDF
    OBJECTIVE: Unlocking the data contained within both structured and unstructured components of electronic health records (EHRs) has the potential to provide a step change in data available for secondary research use, generation of actionable medical insights, hospital management, and trial recruitment. To achieve this, we implemented SemEHR, an open source semantic search and analytics tool for EHRs. METHODS: SemEHR implements a generic information extraction (IE) and retrieval infrastructure by identifying contextualized mentions of a wide range of biomedical concepts within EHRs. Natural language processing annotations are further assembled at the patient level and extended with EHR-specific knowledge to generate a timeline for each patient. The semantic data are serviced via ontology-based search and analytics interfaces. RESULTS: SemEHR has been deployed at a number of UK hospitals, including the Clinical Record Interactive Search, an anonymized replica of the EHR of the UK South London and Maudsley National Health Service Foundation Trust, one of Europe's largest providers of mental health services. In 2 Clinical Record Interactive Search-based studies, SemEHR achieved 93% (hepatitis C) and 99% (HIV) F-measure results in identifying true positive patients. At King's College Hospital in London, as part of the CogStack program (github.com/cogstack), SemEHR is being used to recruit patients into the UK Department of Health 100 000 Genomes Project (genomicsengland.co.uk). The validation study suggests that the tool can validate previously recruited cases and is very fast at searching phenotypes; time for recruitment criteria checking was reduced from days to minutes. Validated on open intensive care EHR data, Medical Information Mart for Intensive Care III, the vital signs extracted by SemEHR can achieve around 97% accuracy. CONCLUSION: Results from the multiple case studies demonstrate SemEHR's efficiency: weeks or months of work can be done within hours or minutes in some cases. SemEHR provides a more comprehensive view of patients, bringing in more and unexpected insight compared to study-oriented bespoke IE systems. SemEHR is open source, available at https://github.com/CogStack/SemEHR

    The influence of fine-scale topography on the impacts of Holocene fire in a Tasmanian montane landscape

    Get PDF
    Copyright © 2019 John Wiley & Sons, Ltd. Tasmania's montane temperate rainforests contain some of Australia's most ancient and endemic flora. Recent landscape-scale fires have impacted a significant portion of these rainforest ecosystems. The complex and rugged topography of Tasmania results in a highly variable influence of fire across the landscape, rendering predictions of ecosystem response to fire difficult. We assess the role of topographic variation in buffering the influence of fire in these endemic rainforest communities. We developed a new 14000-year (14-ka) palaeoecological dataset from Lake Perry, southern Tasmania, and compared it to neighbouring Lake Osborne
    corecore