246 research outputs found

    1H, 15N, and 13C chemical shift assignments of neuronal calcium sensor-1 homolog from fission yeast

    Get PDF
    The neuronal calcium sensor (NCS) proteins regulate signal transduction processes and are highly conserved from yeast to humans. We report complete NMR chemical shift assignments of the NCS homolog from fission yeast (Schizosaccharomyces pombe), referred to in this study as Ncs1p. (BMRB no. 16446)

    VKORC1 Common Variation and Bone Mineral Density in the Third National Health and Nutrition Examination Survey

    Get PDF
    Osteoporosis, defined by low bone mineral density (BMD), is common among postmenopausal women. The distribution of BMD varies across populations and is shaped by both environmental and genetic factors. Because the candidate gene vitamin K epoxide reductase complex subunit 1 (VKORC1) generates vitamin K quinone, a cofactor for the gamma-carboxylation of bone-related proteins such as osteocalcin, we hypothesized that VKORC1 genetic variants may be associated with BMD and osteoporosis in the general population. To test this hypothesis, we genotyped six VKORC1 SNPs in 7,159 individuals from the Third National Health and Nutrition Examination Survey (NHANES III). NHANES III is a nationally representative sample linked to health and lifestyle variables including BMD, which was measured using dual energy x-ray absorptiometry (DEXA) on four regions of the proximal femur. In adjusted models stratified by race/ethnicity and sex, SNPs rs9923231 and rs9934438 were associated with increased BMD (p = 0.039 and 0.024, respectively) while rs8050894 was associated with decreased BMD (p = 0.016) among non-Hispanic black males (n = 619). VKORC1 rs2884737 was associated with decreased BMD among Mexican-American males (n = 795; p = 0.004). We then tested for associations between VKORC1 SNPs and osteoporosis, but the results did not mirror the associations observed between VKORC1 and BMD, possibly due to small numbers of cases. This is the first report of VKORC1 common genetic variation associated with BMD, and one of the few reports available that investigate the genetics of BMD and osteoporosis in diverse populations

    Rhizome Severing Increases Root Lifespan of Leymus chinensis in a Typical Steppe of Inner Mongolia

    Get PDF
    Root lifespan is an important trait that determines plants' ability to acquire and conserve soil resources. There have been several studies investigating characteristics of root lifespan of both woody and herbaceous species. However, most of the studies have focused on non-clonal plants, and there have been little data on root lifespan for clonal plants that occur widely in temperate grasslands.We investigated the effects of rhizome severing on overall root lifespan of Leymus chinensis, a clonal, dominant grass species in the temperate steppe in northern China, in a 2-year field study using modified rhizotron technique. More specifically, we investigated the effects of rhizome severing on root lifespan of roots born in different seasons and distributed at different soil depths. Rhizome severing led to an increase in the overall root lifespan from 81 to 103 days. The increase in root lifespan exhibited spatial and temporal characteristics such that it increased lifespan for roots distributed in the top two soil layers and for roots born in summer and spring, but it had no effect on lifespan of roots in the deep soil layer and born in autumn. We also examined the effect of rhizome severing on carbohydrate and N contents in roots, and found that root carbohydrate and N contents were not affected by rhizome severing. Further, we found that root lifespan of Stipa krylovii and Artemisia frigida, two dominant, non-clonal species in the temperate steppe, was significantly longer (118 d) than that of L. chinensis (81 d), and this value became comparable to that of L. chinensis under rhizome severing (103 d).We found that root lifespan in dominant, clonal L. chinensis was shorter than for the dominant, non-clonal species of S. krylovii and A. frigida. There was a substantial increase in the root lifespan of L. chinensis in response to severing their rhizomes, and this increase in root lifespan exhibited temporal and spatial characteristics. These findings suggest that the presence of rhizomes is likely to account for the observed short lifespan of clonal plant species in the temperate steppe

    High-Resolution Positional Tracking for Long-Term Analysis of Drosophila Sleep and Locomotion Using the “Tracker” Program

    Get PDF
    Drosophila melanogaster has been used for decades in the study of circadian behavior, and more recently has become a popular model for the study of sleep. The classic method for monitoring fly activity involves counting the number of infrared beam crosses in individual small glass tubes. Incident recording methods such as this can measure gross locomotor activity, but they are unable to provide details about where the fly is located in space and do not detect small movements (i.e. anything less than half the enclosure size), which could lead to an overestimation of sleep and an inaccurate report of the behavior of the fly. This is especially problematic if the fly is awake, but is not moving distances that span the enclosure. Similarly, locomotor deficiencies could be incorrectly classified as sleep phenotypes. To address these issues, we have developed a locomotor tracking technique (the “Tracker” program) that records the exact location of a fly in real time. This allows for the detection of very small movements at any location within the tube. In addition to circadian locomotor activity, we are able to collect other information, such as distance, speed, food proximity, place preference, and multiple additional parameters that relate to sleep structure. Direct comparisons of incident recording and our motion tracking application using wild type and locomotor-deficient (CASK-β null) flies show that the increased temporal resolution in the data from the Tracker program can greatly affect the interpretation of the state of the fly. This is especially evident when a particular condition or genotype has strong effects on the behavior, and can provide a wealth of information previously unavailable to the investigator. The interaction of sleep with other behaviors can also be assessed directly in many cases with this method

    Nociceptive Afferents to the Premotor Neurons That Send Axons Simultaneously to the Facial and Hypoglossal Motoneurons by Means of Axon Collaterals

    Get PDF
    It is well known that the brainstem premotor neurons of the facial nucleus and hypoglossal nucleus coordinate orofacial nociceptive reflex (ONR) responses. However, whether the brainstem PNs receive the nociceptive projection directly from the caudal spinal trigeminal nucleus is still kept unclear. Our present study focuses on the distribution of premotor neurons in the ONR pathways of rats and the collateral projection of the premotor neurons which are involved in the brainstem local pathways of the orofacial nociceptive reflexes of rat. Retrograde tracer Fluoro-gold (FG) or FG/tetramethylrhodamine-dextran amine (TMR-DA) were injected into the VII or/and XII, and anterograde tracer biotinylated dextran amine (BDA) was injected into the caudal spinal trigeminal nucleus (Vc). The tracing studies indicated that FG-labeled neurons receiving BDA-labeled fibers from the Vc were mainly distributed bilaterally in the parvicellular reticular formation (PCRt), dorsal and ventral medullary reticular formation (MdD, MdV), supratrigeminal nucleus (Vsup) and parabrachial nucleus (PBN) with an ipsilateral dominance. Some FG/TMR-DA double-labeled premotor neurons, which were observed bilaterally in the PCRt, MdD, dorsal part of the MdV, peri-motor nucleus regions, contacted with BDA-labeled axonal terminals and expressed c-fos protein-like immunoreactivity which induced by subcutaneous injection of formalin into the lip. After retrograde tracer wheat germ agglutinated horseradish peroxidase (WGA-HRP) was injected into VII or XII and BDA into Vc, electron microscopic study revealed that some BDA-labeled axonal terminals made mainly asymmetric synapses on the dendritic and somatic profiles of WGA-HRP-labeled premotor neurons. These data indicate that some premotor neurons could integrate the orofacial nociceptive input from the Vc and transfer these signals simultaneously to different brainstem motonuclei by axonal collaterals

    Dopamine Modulates the Rest Period Length without Perturbation of Its Power Law Distribution in Drosophila melanogaster

    Get PDF
    We analyzed the effects of dopamine signaling on the temporal organization of rest and activity in Drosophila melanogaster. Locomotor behaviors were recorded using a video-monitoring system, and the amounts of movements were quantified by using an image processing program. We, first, confirmed that rest bout durations followed long-tailed (i.e., power-law) distributions, whereas activity bout durations did not with a strict method described by Clauset et al. We also studied the effects of circadian rhythm and ambient temperature on rest bouts and activity bouts. The fraction of activity significantly increased during subjective day and at high temperature, but the power-law exponent of the rest bout distribution was not affected. The reduction in rest was realized by reduction in long rest bouts. The distribution of activity bouts did not change drastically under the above mentioned conditions. We then assessed the effects of dopamine. The distribution of rest bouts became less long-tailed and the time spent in activity significantly increased after the augmentation of dopamine signaling. Administration of a dopamine biosynthesis inhibitor yielded the opposite effects. However, the distribution of activity bouts did not contribute to the changes. These results suggest that the modulation of locomotor behavior by dopamine is predominantly controlled by changing the duration of rest bouts, rather than the duration of activity bouts

    How Long and Low Can You Go? Effect of Conformation on the Risk of Thoracolumbar Intervertebral Disc Extrusion in Domestic Dogs

    Get PDF
    Intervertebral disc extrusion (IVDE) is a common neurological disorder in certain dog breeds, resulting in spinal cord compression and injury that can cause pain and neurological deficits. Most disc extrusions are reported in chondrodystrophic breeds (e.g. Dachshunds, Basset Hounds, Pekingese), where selection for ‘long and low’ morphologies is linked with intervertebral discs abnormalities that predispose dogs to IVDE. The aim of this study was to quantify the relationship between relative thoracolumbar vertebral column length and IVDE risk in diverse breeds. A 14 month cross-sectional study of dogs entering a UK small animal referral hospital for diverse disorders including IVDE was carried out. Dogs were measured on breed-defining morphometrics, including back length (BL) and height at the withers (HW). Of 700 dogs recruited from this referral population, measured and clinically examined, 79 were diagnosed with thoracolumbar IVDE following diagnostic imaging ± surgery. The BL:HW ratio was positively associated with IVDE risk, indicating that relatively longer dogs were at increased risk, e.g. the probability of IVDE was 0.30 for Miniature Dachshunds when BL:HW ratio equalled 1.1, compared to 0.68 when BL:HW ratio equalled 1.5. Additionally, both being overweight and skeletally smaller significantly increased IVDE risk. Therefore, selection for longer backs and miniaturisation should be discouraged in high-risk breeds to reduce IVDE risk. In higher risk individuals, maintaining a lean body shape is particularly important to reduce the risk of IVDE. Results are reported as probabilities to aid decision-making regarding breed standards and screening programmes reflecting the degree of risk acceptable to stakeholders

    Continued Neurogenesis in Adult Drosophila as a Mechanism for Recruiting Environmental Cue-Dependent Variants

    Get PDF
    Background The skills used by winged insects to explore their environment are strongly dependent upon the integration of neurosensory information comprising visual, acoustic and olfactory signals. The neuronal architecture of the wing contains a vast array of different sensors which might convey information to the brain in order to guide the trajectories during flight. In Drosophila, the wing sensory cells are either chemoreceptors or mechanoreceptors and some of these sensors have as yet unknown functions. The axons of these two functionally distinct types of neurons are entangled, generating a single nerve. This simple and accessible coincidental signaling circuitry in Drosophila constitutes an excellent model system to investigate the developmental variability in relation to natural behavioral polymorphisms. Methodology/Principal Findings A fluorescent marker was generated in neurons at all stages of the Drosophila life cycle using a highly efficient and controlled genetic recombination system that can be induced in dividing precursor cells (MARCM system, flybase web site). It allows fluorescent signals in axons only when the neuroblasts and/or neuronal cell precursors like SOP (sensory organ precursors) undergo division during the precedent steps. We first show that a robust neurogenesis continues in the wing after the adults emerge from the pupae followed by an extensive axonal growth. Arguments are presented to suggest that this wing neurogenesis in the newborn adult flies was influenced by genetic determinants such as the frequency dependent for gene and by environmental cues such as population density. Conclusions We demonstrate that the neuronal architecture in the adult Drosophila wing is unfinished when the flies emerge from their pupae. This unexpected developmental step might be crucial for generating non-heritable variants and phenotypic plasticity. This might therefore constitute an advantage in an unstable ecological system and explain much regarding the ability of Drosophila to robustly adapt to their environment

    Living with myotonic dystrophy; what can be learned from couples? a qualitative study

    Get PDF
    Contains fulltext : 96062.pdf (publisher's version ) (Open Access)BACKGROUND: Myotonic dystrophy type 1 (MD1) is one of the most prevalent neuromuscular diseases, yet very little is known about how MD1 affects the lives of couples and how they themselves manage individually and together. To better match health care to their problems, concerns and needs, it is important to understand their perspective of living with this hereditary, systemic disease. METHODS: A qualitative study was carried out with a purposive sample of five middle-aged couples, including three men and two women with MD1 and their partners. Fifteen in-depth interviews with persons with MD1, with their partners and with both of them as a couple took place in the homes of the couples in two cities and three villages in the Netherlands in 2009. Results : People with MD1 associate this progressive, neuromuscular condition with decreasing abilities, describing physical, cognitive and psychosocial barriers to everyday activities and social participation. Partners highlighted the increasing care giving burden, giving directions and using reminders to compensate for the lack of initiative and avoidant behaviour due to MD1. Couples portrayed the dilemmas and frustrations of renegotiating roles and responsibilities; stressing the importance of achieving a balance between individual and shared activities. All participants experienced a lack of understanding from relatives, friends, and society, including health care, leading to withdrawal and isolation. Health care was perceived as fragmentary, with specialists focusing on specific aspects of the disease rather than seeking to understand the implications of the systemic disorder on daily life. CONCLUSIONS: Learning from these couples has resulted in recommendations that challenge the tendency to treat MD1 as a condition with primarily physical impairments. It is vital to listen to couples, to elicit the impact of MD1, as a multisystem disorder that influences every aspect of their life together. Couple management, supporting the self-management skills of both partners is proposed as a way of reducing the mismatch between health services and health needs
    corecore