63 research outputs found

    Implication of long-distance regulation of the HOXA cluster in a patient with postaxial polydactyly

    Get PDF
    Apparently balanced chromosomal inversions may lead to disruption of developmentally important genes at the breakpoints of the inversion, causing congenital malformations. Characterization of such inversions may therefore lead to new insights in human development. Here, we report on a de novo inversion of chromosome 7 (p15.2q36.3) in a patient with postaxial polysyndactyly. The breakpoints do not disrupt likely candidate genes for the limb phenotype observed in the patient. However, on the p-arm the breakpoint separates the HOXA cluster from a gene desert containing several conserved noncoding elements, suggesting that a disruption of a cis-regulatory circuit of the HOXA cluster could be the underlying cause of the phenotype in this patient

    Clinical practice guidelines for the prevention and treatment of EGFR inhibitor-associated dermatologic toxicities

    Get PDF
    Background Epidermal growth factor receptor inhibitors (EGFRI) produce various dermatologic side effects in the majority of patients, and guidelines are crucial for the prevention and treatment of these untoward events. The purpose of this panel was to develop evidence-based recommendations for EGFRI-associated dermatologic toxicities. Methods A multinational, interdisciplinary panel of experts in supportive care in cancer reviewed pertinent studies using established criteria in order to develop first-generation recommendations for EGFRI-associated dermatologic toxicities. Results Prophylactic and reactive recommendations for papulopustular (acneiform) rash, hair changes, radiation dermatitis, pruritus, mucositis, xerosis/fissures, and paronychia are presented, as well as general dermatologic recommendations when possible. Conclusion Prevention and management of EGFRI-related dermatologic toxicities is critical to maintain patients’ health-related quality of life and dose intensity of antineoplastic regimens. More rigorous investigation of these toxicities is warranted to improve preventive and treatment strategies

    Demographic, clinical and antibody characteristics of patients with digital ulcers in systemic sclerosis: data from the DUO Registry

    Get PDF
    OBJECTIVES: The Digital Ulcers Outcome (DUO) Registry was designed to describe the clinical and antibody characteristics, disease course and outcomes of patients with digital ulcers associated with systemic sclerosis (SSc). METHODS: The DUO Registry is a European, prospective, multicentre, observational, registry of SSc patients with ongoing digital ulcer disease, irrespective of treatment regimen. Data collected included demographics, SSc duration, SSc subset, internal organ manifestations, autoantibodies, previous and ongoing interventions and complications related to digital ulcers. RESULTS: Up to 19 November 2010 a total of 2439 patients had enrolled into the registry. Most were classified as either limited cutaneous SSc (lcSSc; 52.2%) or diffuse cutaneous SSc (dcSSc; 36.9%). Digital ulcers developed earlier in patients with dcSSc compared with lcSSc. Almost all patients (95.7%) tested positive for antinuclear antibodies, 45.2% for anti-scleroderma-70 and 43.6% for anticentromere antibodies (ACA). The first digital ulcer in the anti-scleroderma-70-positive patient cohort occurred approximately 5 years earlier than the ACA-positive patient group. CONCLUSIONS: This study provides data from a large cohort of SSc patients with a history of digital ulcers. The early occurrence and high frequency of digital ulcer complications are especially seen in patients with dcSSc and/or anti-scleroderma-70 antibodies

    Platelet secretion defect associated with impaired liberation of arachidonic acid and normal myosin light chain phosphorylation

    Full text link
    Abstract We describe four patients with impaired platelet aggregation and 14C- serotonin secretion during stimulation with adenosine diphosphate (ADP), epinephrine, collagen, and platelet-activating factor. The response to arachidonic acid was normal in all patients with regard to aggregation and in three of the four with regard to 14C-serotonin secretion. The total platelet adenosine triphosphate (ATP) and ADP content and the ATP to ADP ratio was normal in all patients, thereby excluding storage pool deficiency as the cause of the secretion defect. Studies with 3H-arachidonic acid-labeled platelets revealed that the thrombin-induced liberation of arachidonic acid from membrane-bound phospholipids was impaired in these patients. Further, platelet thromboxane B2 production, measured using a radioimmunoassay, was diminished during stimulation with ADP and thrombin, but was normal with arachidonic acid, indicating that the oxygenation of arachidonic acid was normal and that the diminished thromboxane production was due to a defect in the liberation of arachidonic acid. Release of arachidonic acid is mediated by phospholipases that are Ca++ dependent. To examine whether these patients may have a defect in making intracellular Ca++ available, another Ca++-dependent process, myosin light chain phosphorylation, was studied during thrombin stimulation. Platelets from three of the patients were found to behave the same as normal ones, suggesting that the deficiency in phospholipase activity may not be due to impaired Ca++ mobilization. Our studies demonstrate a novel group of patients with platelet secretion defects associated with impaired liberation of arachidonic acid from phospholipids. These patients exemplify a congenital defect, other than deficiencies of cyclooxygenase and thromboxane synthetase, by which thromboxane production may be impaired in platelets.</jats:p

    Platelet secretion defect associated with impaired liberation of arachidonic acid and normal myosin light chain phosphorylation

    Full text link
    We describe four patients with impaired platelet aggregation and 14C- serotonin secretion during stimulation with adenosine diphosphate (ADP), epinephrine, collagen, and platelet-activating factor. The response to arachidonic acid was normal in all patients with regard to aggregation and in three of the four with regard to 14C-serotonin secretion. The total platelet adenosine triphosphate (ATP) and ADP content and the ATP to ADP ratio was normal in all patients, thereby excluding storage pool deficiency as the cause of the secretion defect. Studies with 3H-arachidonic acid-labeled platelets revealed that the thrombin-induced liberation of arachidonic acid from membrane-bound phospholipids was impaired in these patients. Further, platelet thromboxane B2 production, measured using a radioimmunoassay, was diminished during stimulation with ADP and thrombin, but was normal with arachidonic acid, indicating that the oxygenation of arachidonic acid was normal and that the diminished thromboxane production was due to a defect in the liberation of arachidonic acid. Release of arachidonic acid is mediated by phospholipases that are Ca++ dependent. To examine whether these patients may have a defect in making intracellular Ca++ available, another Ca++-dependent process, myosin light chain phosphorylation, was studied during thrombin stimulation. Platelets from three of the patients were found to behave the same as normal ones, suggesting that the deficiency in phospholipase activity may not be due to impaired Ca++ mobilization. Our studies demonstrate a novel group of patients with platelet secretion defects associated with impaired liberation of arachidonic acid from phospholipids. These patients exemplify a congenital defect, other than deficiencies of cyclooxygenase and thromboxane synthetase, by which thromboxane production may be impaired in platelets.</jats:p
    corecore