9,646 research outputs found

    Stability of the self-phase-locked pump-enhanced singly resonant parametric oscillator

    Get PDF
    Steady-state and dynamics of the self-phase-locked (3\omega ==> 2\omega, \omega) subharmonic optical parametric oscillator are analyzed in the pump-and-signal resonant configuration, using an approximate analytical model and a full propagation model. The upper branch solutions are found always stable, regardless of the degree of pump enhancement. The domain of existence of stationary states is found to critically depend on the phase-mismatch of the competing second-harmonic process.Comment: LateX2e/RevteX4, 4 pages, 5 figures. Submitted to Phys. Rev. A (accepted on Jan. 17, 2003

    Using machine-learning risk prediction models to triage the acuity of undifferentiated patients entering the emergency care system: a systematic review

    Get PDF
    Background The primary objective of this review is to assess the accuracy of machine learning methods in their application of triaging the acuity of patients presenting in the Emergency Care System (ECS). The population are patients that have contacted the ambulance service or turned up at the Emergency Department. The index test is a machine-learning algorithm that aims to stratify the acuity of incoming patients at initial triage. This is in comparison to either an existing decision support tool, clinical opinion or in the absence of these, no comparator. The outcome of this review is the calibration, discrimination and classification statistics. Methods Only derivation studies (with or without internal validation) were included. MEDLINE, CINAHL, PubMed and the grey literature were searched on the 14th December 2019. Risk of bias was assessed using the PROBAST tool and data was extracted using the CHARMS checklist. Discrimination (C-statistic) was a commonly reported model performance measure and therefore these statistics were represented as a range within each machine learning method. The majority of studies had poorly reported outcomes and thus a narrative synthesis of results was performed. Results There was a total of 92 models (from 25 studies) included in the review. There were two main triage outcomes: hospitalisation (56 models), and critical care need (25 models). For hospitalisation, neural networks and tree-based methods both had a median C-statistic of 0.81 (IQR 0.80-0.84, 0.79-0.82). Logistic regression had a median C-statistic of 0.80 (0.74-0.83). For critical care need, neural networks had a median C-statistic of 0.89 (0.86-0.91), tree based 0.85 (0.84-0.88), and logistic regression 0.83 (0.79-0.84). Conclusions Machine-learning methods appear accurate in triaging undifferentiated patients entering the Emergency Care System. There was no clear benefit of using one technique over another; however, models derived by logistic regression were more transparent in reporting model performance. Future studies should adhere to reporting guidelines and use these at the protocol design stage. Registration and funding This systematic review is registered on the International prospective register of systematic reviews (PROSPERO) and can be accessed online at the following URL: https://www.crd.york.ac.uk/PROSPERO/display_record.php?ID=CRD42020168696 This study was funded by the NIHR as part of a Clinical Doctoral Research Fellowship

    Observation of correlations up to the micrometer scale in sliding charge-density waves

    Full text link
    High-resolution coherent x-ray diffraction experiment has been performed on the charge density wave (CDW) system K0.3_{0.3}MoO3_3. The 2kF2k_F satellite reflection associated with the CDW has been measured with respect to external dc currents. In the sliding regime, the 2kF2k_F satellite reflection displays secondary satellites along the chain axis which corresponds to correlations up to the micrometer scale. This super long range order is 1500 times larger than the CDW period itself. This new type of electronic correlation seems inherent to the collective dynamics of electrons in charge density wave systems. Several scenarios are discussed.Comment: 4 pages, 3 figures Typos added, references remove

    Singe ferroelectric and chiral magnetic domain of single-crystalline BiFeO3_3 in an electric field

    Full text link
    We report polarized neutron scattering and piezoresponse force microscopy studies of millimeter-sized single crystals of multiferroic BiFeO3_3. The crystals, grown below the Curie temperature, consist of a single ferroelectric domain. Two unique electric polarization directions, as well as the populations of equivalent spiral magnetic domains, can be switched reversibly by an electric field. A ferroelectric monodomain with a single-qq single-helicity spin spiral can be obtained. This level of control, so far unachievable in thin films, makes single-crystal BiFeO3_3 a promising object for multiferroics research.Comment: 4 figures in separate jpg file

    High energy gamma ray balloon instrument

    Get PDF
    The High Energy Gamma Ray Balloon Instrument was built in part to verify certain subsystems' performance for the Energetic Gamma Ray Experiment Telescope (EGRET) instrument, the high energy telescope to be carried on the Gamma Ray Observatory. This paper describes the instrument, the performance of some subsystems, and some relevant results

    Accuracy metrics for judging time scale algorithms

    Get PDF
    Time scales have been constructed in different ways to meet the many demands placed upon them for time accuracy, frequency accuracy, long-term stability, and robustness. Usually, no single time scale is optimum for all purposes. In the context of the impending availability of high-accuracy intermittently-operated cesium fountains, we reconsider the question of evaluating the accuracy of time scales which use an algorithm to span interruptions of the primary standard. We consider a broad class of calibration algorithms that can be evaluated and compared quantitatively for their accuracy in the presence of frequency drift and a full noise model (a mixture of white PM, flicker PM, white FM, flicker FM, and random walk FM noise). We present the analytic techniques for computing the standard uncertainty for the full noise model and this class of calibration algorithms. The simplest algorithm is evaluated to find the average-frequency uncertainty arising from the noise of the cesium fountain's local oscillator and from the noise of a hydrogen maser transfer-standard. This algorithm and known noise sources are shown to permit interlaboratory frequency transfer with a standard uncertainty of less than 10(exp -15) for periods of 30-100 days

    Competition between electric field and magnetic field noise in the decoherence of a single spin in diamond

    Full text link
    We analyze the impact of electric field and magnetic field fluctuations in the decoherence of the electronic spin associated with a single nitrogen-vacancy (NV) defect in diamond by engineering spin eigenstates protected either against magnetic noise or against electric noise. The competition between these noise sources is analyzed quantitatively by changing their relative strength through modifications of the environment. This study provides significant insights into the decoherence of the NV electronic spin, which is valuable for quantum metrology and sensing applications.Comment: 8 pages, 4 figures, including supplementary information

    Dynamics of the Fisher Information Metric

    Get PDF
    We present a method to generate probability distributions that correspond to metrics obeying partial differential equations generated by extremizing a functional J[gμν(θi)]J[g^{\mu\nu}(\theta^i)], where gμν(θi)g^{\mu\nu}(\theta^i) is the Fisher metric. We postulate that this functional of the dynamical variable gμν(θi)g^{\mu\nu}(\theta^i) is stationary with respect to small variations of these variables. Our approach enables a dynamical approach to Fisher information metric. It allows to impose symmetries on a statistical system in a systematic way. This work is mainly motivated by the entropy approach to nonmonotonic reasoning.Comment: 11 page

    Popular critiques of consultancy and a politics of management learning?

    Get PDF
    In this short article, I argue that popular business discourse on the role of management consultancy in the promotion and translation of management ideas is often critical, informed by more or less implicit ethical and political concerns with employee security, equity, openness and the transparency and legitimacy of responsibility. These concerns are, in part, ‘sayable’ because their object is seen as a scapegoat for management. Nevertheless, combined with the popular form of their expression, they can support and legitimize critical studies of management learning, a discipline which otherwise has become overly concerned with processual and situational phenomena at the expense of broader political dynamics and of the content and consequences of management and management knowledg

    Engineered arrays of NV color centers in diamond based on implantation of CN- molecules through nanoapertures

    Full text link
    We report a versatile method to engineer arrays of nitrogen-vacancy (NV) color centers in dia- mond at the nanoscale. The defects were produced in parallel by ion implantation through 80 nm diameter apertures patterned using electron beam lithography in a PMMA layer deposited on a diamond surface. The implantation was performed with CN- molecules which increased the NV defect formation yield. This method could enable the realization of a solid-state coupled-spin array and could be used for positioning an optically active NV center on a photonic microstructure.Comment: 12 pages, 3 figure
    • …
    corecore