69 research outputs found

    Evaluation of the anti-proliferative effect the extracts of Allamanda blanchetti and A-schottii on the growth of leukemic and endothelial cells

    Get PDF
    PURPOSE. To investigate the anti-proliferative effect of A. blanchetti and A. schottii extracts. METHODS. The anti-proliferative effect of A. blanchetti and A. schottii ethanolic extracts on K562 leukemic cells as well as on BMEC and HUVEC were evaluated. Phytochemical analysis to identify the possible active components was carried out. RESULTS. The root extract of A. schottii was the most active of them. At 80 mu g/mL, the root extracts showed a cytostatic effect on K562, whereas at 400 mu g/mL, there was a strong cytotoxic effect. Similar cytostatic and cytotoxic effects were seen in the endothelial cells, but at lower doses. The effect of A. schottii root extract on endothelial cells was seen at concentrations ten times lower (8 mu g/mL) than the effect of the A. blanchetti root extract (80 mu g/mL). Phytochemical investigation of different fractions and parts of the plant led to the isolation of several known compounds, some of which are described for the first time in the genus Allamanda, and with previous evidence of anticancer and antitumoral properties. CONCLUSIONS. Our results suggest that both plants studied exhibit cytostatic and cytotoxic activity, but the most active compounds are located in the roots.9220020

    Lymphotoxin-β receptor in microenvironmental cells promotes the development of T-cell acute lymphoblastic leukaemia with cortical/mature immunophenotype.

    Get PDF
    Lymphotoxin-mediated activation of the lymphotoxin-β receptor (LTβR; LTBR) has been implicated in cancer, but its role in T-cell acute lymphoblastic leukaemia (T-ALL) has remained elusive. Here we show that the genes encoding lymphotoxin (LT)-α and LTβ (LTA, LTB) are expressed in T-ALL patient samples, mostly of the TAL/LMO molecular subtype, and in the TEL-JAK2 transgenic mouse model of cortical/mature T-ALL (Lta, Ltb). In these mice, expression of Lta and Ltb is elevated in early stage T-ALL. Surface LTα1 β2 protein is expressed in primary mouse T-ALL cells, but only in the absence of microenvironmental LTβR interaction. Indeed, surface LT expression is suppressed in leukaemic cells contacting Ltbr-expressing but not Ltbr-deficient stromal cells, both in vitro and in vivo, thus indicating that dynamic surface LT expression in leukaemic cells depends on interaction with its receptor. Supporting the notion that LT signalling plays a role in T-ALL, inactivation of Ltbr results in a significant delay in TEL-JAK2-induced leukaemia onset. Moreover, young asymptomatic TEL-JAK2;Ltbr(-/-) mice present markedly less leukaemic thymocytes than age-matched TEL-JAK2;Ltbr(+/+) mice and interference with LTβR function at this early stage delayed T-ALL development. We conclude that LT expression by T-ALL cells activates LTβR signalling in thymic stromal cells, thus promoting leukaemogenesis.Grants from Fundação para a Ciencia e a Tecnologia (PTDC/SAU-OBD/103336/2008 and PEst-OE/EQB/LA0023/2013), Nucleo Regional Sul da Liga Portuguesa Contra o Cancro (NRS/LPCC-Terry Fox) and Fundacao MSD to NRdS; grants from the Sao Paulo Research Foundation (FAPESP 08/10034-1 and 12/12802-1) to JAY; and Plan Cancer Action 29 to ED. MTF (SFRH/BD/75137/2010) MNG (SFRH/BD/80503/2011), and RKK (SFRH/BPD/70718/2010) were recipients of FCT PhD or postdoctoral fellowships. ABS and JAY are supported by PhD and Productivity Fellowships, respectively, from the Brazilian National Council for Scientific and Technological Development (CNPq). NRdS has been supported by FCT Ciencia 2007 and FCT Investigator contracts (IF/00056/2012)

    Dynamical Boson Stars

    Full text link
    The idea of stable, localized bundles of energy has strong appeal as a model for particles. In the 1950s John Wheeler envisioned such bundles as smooth configurations of electromagnetic energy that he called {\em geons}, but none were found. Instead, particle-like solutions were found in the late 1960s with the addition of a scalar field, and these were given the name {\em boson stars}. Since then, boson stars find use in a wide variety of models as sources of dark matter, as black hole mimickers, in simple models of binary systems, and as a tool in finding black holes in higher dimensions with only a single killing vector. We discuss important varieties of boson stars, their dynamic properties, and some of their uses, concentrating on recent efforts.Comment: 79 pages, 25 figures, invited review for Living Reviews in Relativity; major revision in 201

    The Formation of the First Massive Black Holes

    Full text link
    Supermassive black holes (SMBHs) are common in local galactic nuclei, and SMBHs as massive as several billion solar masses already exist at redshift z=6. These earliest SMBHs may grow by the combination of radiation-pressure-limited accretion and mergers of stellar-mass seed BHs, left behind by the first generation of metal-free stars, or may be formed by more rapid direct collapse of gas in rare special environments where dense gas can accumulate without first fragmenting into stars. This chapter offers a review of these two competing scenarios, as well as some more exotic alternative ideas. It also briefly discusses how the different models may be distinguished in the future by observations with JWST, (e)LISA and other instruments.Comment: 47 pages with 306 references; this review is a chapter in "The First Galaxies - Theoretical Predictions and Observational Clues", Springer Astrophysics and Space Science Library, Eds. T. Wiklind, V. Bromm & B. Mobasher, in pres

    Relativistic Dynamics and Extreme Mass Ratio Inspirals

    Full text link
    It is now well-established that a dark, compact object (DCO), very likely a massive black hole (MBH) of around four million solar masses is lurking at the centre of the Milky Way. While a consensus is emerging about the origin and growth of supermassive black holes (with masses larger than a billion solar masses), MBHs with smaller masses, such as the one in our galactic centre, remain understudied and enigmatic. The key to understanding these holes - how some of them grow by orders of magnitude in mass - lies in understanding the dynamics of the stars in the galactic neighbourhood. Stars interact with the central MBH primarily through their gradual inspiral due to the emission of gravitational radiation. Also stars produce gases which will subsequently be accreted by the MBH through collisions and disruptions brought about by the strong central tidal field. Such processes can contribute significantly to the mass of the MBH and progress in understanding them requires theoretical work in preparation for future gravitational radiation millihertz missions and X-ray observatories. In particular, a unique probe of these regions is the gravitational radiation that is emitted by some compact stars very close to the black holes and which could be surveyed by a millihertz gravitational wave interferometer scrutinizing the range of masses fundamental to understanding the origin and growth of supermassive black holes. By extracting the information carried by the gravitational radiation, we can determine the mass and spin of the central MBH with unprecedented precision and we can determine how the holes "eat" stars that happen to be near them.Comment: Update from the first version, 151 pages, accepted for publication @ Living Reviews in Relativit

    Exploring new physics frontiers through numerical relativity

    Get PDF
    The demand to obtain answers to highly complex problems within strong-field gravity has been met with significant progress in the numerical solution of Einstein's equations - along with some spectacular results - in various setups. We review techniques for solving Einstein's equations in generic spacetimes, focusing on fully nonlinear evolutions but also on how to benchmark those results with perturbative approaches. The results address problems in high-energy physics, holography, mathematical physics, fundamental physics, astrophysics and cosmology

    Varying constants, Gravitation and Cosmology

    Get PDF
    Fundamental constants are a cornerstone of our physical laws. Any constant varying in space and/or time would reflect the existence of an almost massless field that couples to matter. This will induce a violation of the universality of free fall. It is thus of utmost importance for our understanding of gravity and of the domain of validity of general relativity to test for their constancy. We thus detail the relations between the constants, the tests of the local position invariance and of the universality of free fall. We then review the main experimental and observational constraints that have been obtained from atomic clocks, the Oklo phenomenon, Solar system observations, meteorites dating, quasar absorption spectra, stellar physics, pulsar timing, the cosmic microwave background and big bang nucleosynthesis. At each step we describe the basics of each system, its dependence with respect to the constants, the known systematic effects and the most recent constraints that have been obtained. We then describe the main theoretical frameworks in which the low-energy constants may actually be varying and we focus on the unification mechanisms and the relations between the variation of different constants. To finish, we discuss the more speculative possibility of understanding their numerical values and the apparent fine-tuning that they confront us with.Comment: 145 pages, 10 figures, Review for Living Reviews in Relativit
    corecore