35 research outputs found

    High intensity intermittent games-based activity and adolescents’ cognition: moderating effect of physical fitness

    Get PDF
    Background: An acute bout of exercise elicits a beneficial effect on subsequent cognitive function in adolescents. The effect of games-based activity, an ecologically valid and attractive exercise model for young people, remains unknown; as does the moderating effect of fitness on the acute exercise-cognition relationship. Therefore, the aim of the present study was to examine the effect of games-based activity on subsequent cognition in adolescents, and the moderating effect of fitness on this relationship. Methods: Following ethical approval, 39 adolescents (12.3 ± 0.7 year) completed an exercise and resting trial in a counterbalanced, randomised crossover design. During familiarisation, participants completed a multi-stage fitness test to predict VO2 peak. The exercise trial consisted of 60-min games-based activity (basketball), during which heart rate was 158 ± 11 beats∙min−1. A battery of cognitive function tests (Stroop test, Sternberg paradigm, trail making and d2 tests) were completed 30-min before, immediately following and 45-min following the basketball. Results: Response times on the complex level of the Stroop test were enhanced both immediately (p = 0.021) and 45-min (p = 0.035) post-exercise, and response times on the five item level of the Sternberg paradigm were enhanced immediately post-exercise (p = 0.023). There were no effects on the time taken to complete the trail making test or any outcome of the d2 test. In particular, response times were enhanced in the fitter adolescents 45-min post-exercise on both levels of the Stroop test (simple, p = 0.005; complex, p = 0.040) and on the three item level of the Sternberg paradigm immediately (p = 0.017) and 45-min (p = 0.008) post-exercise. Conclusions: Games-based activity enhanced executive function and working memory scanning speed in adolescents, an effect particularly evident in fitter adolescents, whilst the high intensity intermittent nature of games-based activity may be too demanding for less fit children

    Does the diurnal cycle of cortisol explain the relationship between physical performance and cognitive function in older adults?

    Get PDF
    Background Regular physical activity is a promising strategy to treat and prevent cognitive decline. The mechanisms that mediate these benefits are not fully clear but physical activity is thought to attenuate the harmful effects of chronic psychological stress and hypercortisolism on cognition. However, the circadian pattern of cortisol secretion is complex and it is not known which aspects are most closely associated with increased cognitive function and better physical performance. This is the first study to simultaneously measure cognitive function, the diurnal cycle of salivary cortisol and physical performance in older adults, without cognitive impairment (n = 30) and with amnestic Mild Cognitive Impairment (aMCI) (n = 30). Results Regression analysis showed that better cognitive function was associated with better physical performance. A greater variance in cortisol levels across the day from morning to evening was associated with better cognitive function and physical performance. Conclusions The results support the idea that a more dynamic cortisol secretion pattern is associated with better cognitive function and physical performance even in the presence of cognitive impairment, but our results could not confirm a mediating role in this relationship

    VASP: A Volumetric Analysis of Surface Properties Yields Insights into Protein-Ligand Binding Specificity

    Get PDF
    Many algorithms that compare protein structures can reveal similarities that suggest related biological functions, even at great evolutionary distances. Proteins with related function often exhibit differences in binding specificity, but few algorithms identify structural variations that effect specificity. To address this problem, we describe the Volumetric Analysis of Surface Properties (VASP), a novel volumetric analysis tool for the comparison of binding sites in aligned protein structures. VASP uses solid volumes to represent protein shape and the shape of surface cavities, clefts and tunnels that are defined with other methods. Our approach, inspired by techniques from constructive solid geometry, enables the isolation of volumetrically conserved and variable regions within three dimensionally superposed volumes. We applied VASP to compute a comparative volumetric analysis of the ligand binding sites formed by members of the steroidogenic acute regulatory protein (StAR)-related lipid transfer (START) domains and the serine proteases. Within both families, VASP isolated individual amino acids that create structural differences between ligand binding cavities that are known to influence differences in binding specificity. Also, VASP isolated cavity subregions that differ between ligand binding cavities which are essential for differences in binding specificity. As such, VASP should prove a valuable tool in the study of protein-ligand binding specificity

    The role of diatom nanostructures in biasing diffusion to improve uptake in a patchy nutrient environment

    Get PDF
    Extent: 9 p.BACKGROUND: Diatoms are important single-celled autotrophs that dominate most lit aquatic environments and are distinguished by surficial frustules with intricate designs of unknown function. PRINCIPAL FINDINGS: We show that some frustule designs constrain diffusion to positively alter nutrient uptake. In nutrient gradients of 4 to 160 times over, 5 cm, the screened-chambered morphology of Coscincodiscus sp. biases the nutrient diffusion towards the cell by at least 3.8 times the diffusion to the seawater. In contrast, the open-chambers of Thalassiosira eccentrica produce at least a 1.3 times diffusion advantage to the membrane over Coscincodiscus sp. when nutrients are homogeneous. SIGNIFICANCE: Diffusion constraint explains the success of particular diatom species at given times and the overall success of diatoms. The results help answer the unresolved question of how adjacent microplankton compete. Furthermore, diffusion constraint by supramembrane nanostructures to alter molecular diffusion suggests that microbes compete via supramembrane topology, a competitive mechanism not considered by the standard smooth-surface equations used for nutrient uptake nor in microbial ecology and cell physiology.James G. Mitchell, Laurent Seuront, Mark J. Doubell, Dusan Losic, Nicolas H. Voelcker, Justin Seymour and Ratnesh La

    Effects of a cognitive training on spatial learning and associated functional brain activations

    Get PDF
    BACKGROUND: Both cognitive and physical exercise have been discussed as promising interventions for healthy cognitive aging. The present study assessed the effects of cognitive training (spatial vs. perceptual training) and physical training (endurance training vs. non-endurance training) on spatial learning and associated brain activation in 33 adults (40–55 years). Spatial learning was assessed with a virtual maze task, and at the same time neural correlates were measured with functional magnetic resonance imaging (fMRI). RESULTS: Only the spatial training improved performance in the maze task. These behavioral gains were accompanied by a decrease in frontal and temporal lobe activity. At posttest, participants of the spatial training group showed lower activity than participants of the perceptual training group in a network of brain regions associated with spatial learning, including the hippocampus and parahippocampal gyrus. No significant differences were observed between the two physical intervention groups. CONCLUSIONS: Functional changes in neural systems associated with spatial navigation can be induced by cognitive interventions and seem to be stronger than effects of physical exercise in middle-aged adults
    corecore