207 research outputs found

    Nitrogen fixation and transfer in open ocean diatom–cyanobacterial symbioses

    Get PDF
    Many diatoms that inhabit low-nutrient waters of the open ocean live in close association with cyanobacteria. Some of these associations are believed to be mutualistic, where N2-fixing cyanobacterial symbionts provide N for the diatoms. Rates of N2 fixation by symbiotic cyanobacteria and the N transfer to their diatom partners were measured using a high-resolution nanometer scale secondary ion mass spectrometry approach in natural populations. Cell-specific rates of N2 fixation (1.15–71.5 fmol N per cell hβˆ’1) were similar amongst the symbioses and rapid transfer (within 30 min) of fixed N was also measured. Similar growth rates for the diatoms and their symbionts were determined and the symbiotic growth rates were higher than those estimated for free-living cells. The N2 fixation rates estimated for Richelia and Calothrix symbionts were 171–420 times higher when the cells were symbiotic compared with the rates estimated for the cells living freely. When combined, the latter two results suggest that the diatom partners influence the growth and metabolism of their cyanobacterial symbionts. We estimated that Richelia fix 81–744% more N than needed for their own growth and up to 97.3% of the fixed N is transferred to the diatom partners. This study provides new information on the mechanisms controlling N input into the open ocean by symbiotic microorganisms, which are widespread and important for oceanic primary production. Further, this is the first demonstration of N transfer from an N2 fixer to a unicellular partner. These symbioses are important models for molecular regulation and nutrient exchange in symbiotic systems

    Chemical and physical defense traits in two sexual forms of opuntia robusta in Central Eastern Mexico

    Get PDF
    Sexually dimorphic plants provide an excellent opportunity for examining the differences in the extent of their defense against herbivores because they exhibit sex-related differences in reproductive investment. Such differences enable comparison of the sex with high reproduction expenses with the sex that expends less. The more costly sex is usually also better defended against herbivores. Generally, females are considered more valuable than hermaphrodites in terms of fitness; however, hermaphrodites are more valuable if they can produce seed by autonomous selfing, provided that the inbreeding depression is low and pollen is limited. We studied a gynodioecious population of Opuntia robusta from Central-Eastern Mexico, which has been reported to be trioecious, dioecious, or hermaphrodite, and addressed the following questions: 1) Is the hermaphrodite's reproductive output higher than the female's, and are hermaphrodites thus better defended? 2) Are plant tissues differentially defended? 3) Do trade-offs exist among different physical defense traits? and 4) among physical and chemical defense traits? We found that 1) hermaphrodites had a higher seed output and more spines per areola than females and that their spines contained less moisture. Non-reproductive hermaphrodite cladodes contained more total phenolic compounds (TPCs) than female ones. In addition, 2) hermaphrodite reproductive cladodes bore more spines than female cladodes, and 3) and 4) we found a negative relationship between spine number per areola and areola number per cladode and a positive relationship between spine number per areola per plant and TPC concentration per plant. Non-reproductive hermaphrodite cladodes contained a higher concentration of TPCs than female cladodes, and parental cladodes contained fewer TPCs than both reproductive and empty cladodes

    Diversity analysis of 80,000 wheat accessions reveals consequences and opportunities of selection footprints

    Get PDF
    Undomesticated wild species, crop wild relatives, and landraces represent sources of variation for wheat improvement to address challenges from climate change and the growing human population. Here, we study 56,342 domesticated hexaploid, 18,946 domesticated tetraploid and 3,903 crop wild relatives in a massive-scale genotyping and diversity analysis. Using DArTseqTM technology, we identify more than 300,000 high-quality SNPs and SilicoDArT markers and align them to three reference maps: the IWGSC RefSeq v1.0 genome assembly, the durum wheat genome assembly (cv. Svevo), and the DArT genetic map. On average, 72% of the markers are uniquely placed on these maps and 50% are linked to genes. The analysis reveals landraces with unexplored diversity and genetic footprints defined by regions under selection. This provides fertile ground to develop wheat varieties of the future by exploring specific gene or chromosome regions and identifying germplasm conserving allelic diversity missing in current breeding programs

    Analysis of a viral metagenomic library from 200 m depth in Monterey Bay, California constructed by direct shotgun cloning

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Viruses have a profound influence on both the ecology and evolution of marine plankton, but the genetic diversity of viral assemblages, particularly those in deeper ocean waters, remains poorly described. Here we report on the construction and analysis of a viral metagenome prepared from below the euphotic zone in a temperate, eutrophic bay of coastal California.</p> <p>Methods</p> <p>We purified viruses from approximately one cubic meter of seawater collected from 200m depth in Monterey Bay, CA. DNA was extracted from the virus fraction, sheared, and cloned with no prior amplification into a plasmid vector and propagated in <it>E. coli </it>to produce the MBv200m library. Random clones were sequenced by the Sanger method. Sequences were assembled then compared to sequences in GenBank and to other viral metagenomic libraries using BLAST analyses.</p> <p>Results</p> <p>Only 26% of the 881 sequences remaining after assembly had significant (E ≀ 0.001) BLAST hits to sequences in the GenBank nr database, with most being matches to bacteria (15%) and viruses (8%). When BLAST analysis included environmental sequences, 74% of sequences in the MBv200m library had a significant match. Most of these hits (70%) were to microbial metagenome sequences and only 0.7% were to sequences from viral metagenomes. Of the 121 sequences with a significant hit to a known virus, 94% matched bacteriophages (Families <it>Podo</it>-, <it>Sipho</it>-, and <it>Myoviridae</it>) and 6% matched viruses of eukaryotes in the Family <it>Phycodnaviridae </it>(5 sequences) or the Mimivirus (2 sequences). The largest percentages of hits to viral genes of known function were to those involved in DNA modification (25%) or structural genes (17%). Based on reciprocal BLAST analyses, the MBv200m library appeared to be most similar to viral metagenomes from two other bays and least similar to a viral metagenome from the Arctic Ocean.</p> <p>Conclusions</p> <p>Direct cloning of DNA from diverse marine viruses was feasible and resulted in a distribution of virus types and functional genes at depth that differed in detail, but were broadly similar to those found in surface marine waters. Targeted viral analyses are useful for identifying those components of the greater marine metagenome that circulate in the subcellular size fraction.</p

    Differences in Muscle Protein Synthesis and Anabolic Signaling in the Postabsorptive State and in Response to Food in 65–80 Year Old Men and Women

    Get PDF
    Women have less muscle than men but lose it more slowly during aging. To discover potential underlying mechanism(s) for this we evaluated the muscle protein synthesis process in postabsorptive conditions and during feeding in twenty-nine 65–80 year old men (nβ€Š=β€Š13) and women (nβ€Š=β€Š16). We discovered that the basal concentration of phosphorylated eEF2Thr56 was ∼40% less (P<0.05) and the basal rate of MPS was ∼30% greater (Pβ€Š=β€Š0.02) in women than in men; the basal concentrations of muscle phosphorylated AktThr308, p70s6kThr389, eIF4ESer209, and eIF4E-BP1Thr37/46 were not different between the sexes. Feeding increased (P<0.05) AktThr308 and p70s6kThr389 phosphorylation to the same extent in men and women but increased (P<0.05) the phosphorylation of eIF4ESer209 and eIF4E-BP1Thr37/46 in men only. Accordingly, feeding increased MPS in men (P<0.01) but not in women. The postabsorptive muscle mRNA concentrations for myoD and myostatin were not different between sexes; feeding doubled myoD mRNA (P<0.05) and halved that of myostatin (P<0.05) in both sexes. Thus, there is sexual dimorphism in MPS and its control in older adults; a greater basal rate of MPS, operating over most of the day may partially explain the slower loss of muscle in older women

    Differences in Muscle Protein Synthesis and Anabolic Signaling in the Postabsorptive State and in Response to Food in 65–80 Year Old Men and Women

    Get PDF
    Women have less muscle than men but lose it more slowly during aging. To discover potential underlying mechanism(s) for this we evaluated the muscle protein synthesis process in postabsorptive conditions and during feeding in twenty-nine 65–80 year old men (nβ€Š=β€Š13) and women (nβ€Š=β€Š16). We discovered that the basal concentration of phosphorylated eEF2Thr56 was ∼40% less (P<0.05) and the basal rate of MPS was ∼30% greater (Pβ€Š=β€Š0.02) in women than in men; the basal concentrations of muscle phosphorylated AktThr308, p70s6kThr389, eIF4ESer209, and eIF4E-BP1Thr37/46 were not different between the sexes. Feeding increased (P<0.05) AktThr308 and p70s6kThr389 phosphorylation to the same extent in men and women but increased (P<0.05) the phosphorylation of eIF4ESer209 and eIF4E-BP1Thr37/46 in men only. Accordingly, feeding increased MPS in men (P<0.01) but not in women. The postabsorptive muscle mRNA concentrations for myoD and myostatin were not different between sexes; feeding doubled myoD mRNA (P<0.05) and halved that of myostatin (P<0.05) in both sexes. Thus, there is sexual dimorphism in MPS and its control in older adults; a greater basal rate of MPS, operating over most of the day may partially explain the slower loss of muscle in older women

    Diabetes-Specific Nutrition Algorithm: A Transcultural Program to Optimize Diabetes and Prediabetes Care

    Get PDF
    Type 2 diabetes (T2D) and prediabetes have a major global impact through high disease prevalence, significant downstream pathophysiologic effects, and enormous financial liabilities. To mitigate this disease burden, interventions of proven effectiveness must be used. Evidence shows that nutrition therapy improves glycemic control and reduces the risks of diabetes and its complications. Accordingly, diabetes-specific nutrition therapy should be incorporated into comprehensive patient management programs. Evidence-based recommendations for healthy lifestyles that include healthy eating can be found in clinical practice guidelines (CPGs) from professional medical organizations. To enable broad implementation of these guidelines, recommendations must be reconstructed to account for cultural differences in lifestyle, food availability, and genetic factors. To begin, published CPGs and relevant medical literature were reviewed and evidence ratings applied according to established protocols for guidelines. From this information, an algorithm for the nutritional management of people with T2D and prediabetes was created. Subsequently, algorithm nodes were populated with transcultural attributes to guide decisions. The resultant transcultural diabetes-specific nutrition algorithm (tDNA) was simplified and optimized for global implementation and validation according to current standards for CPG development and cultural adaptation. Thus, the tDNA is a tool to facilitate the delivery of nutrition therapy to patients with T2D and prediabetes in a variety of cultures and geographic locations. It is anticipated that this novel approach can reduce the burden of diabetes, improve quality of life, and save lives. The specific Southeast Asian and Asian Indian tDNA versions can be found in companion articles in this issue of Current Diabetes Reports
    • …
    corecore