1,941 research outputs found

    WASH and Tsg101/ALIX-dependent diversion of stress-internalized EGFR from the canonical endocytic pathway

    Get PDF
    Stress exposure triggers ligand-independent EGF receptor (EGFR) endocytosis, but its post-endocytic fate and role in regulating signalling are unclear. We show that the p38 MAP kinase-dependent, EGFR tyrosine kinase (TK)-independent EGFR internalization induced by ultraviolet light C (UVC) or the cancer therapeutic cisplatin, is followed by diversion from the canonical endocytic pathway. Instead of lysosomal degradation or plasma membrane recycling, EGFR accumulates in a subset of LBPA-rich perinuclear multivesicular bodies (MVBs) distinct from those carrying EGF-stimulated EGFR. Stress-internalized EGFR co-segregates with exogenously expressed pre-melanosomal markers OA1 and fibrillar PMEL, following early endosomal sorting by the actin polymerization-promoting WASH complex. Stress-internalized EGFR is retained intracellularly by continued p38 activity in a mechanism involving ubiquitin-independent, ESCRT/ALIX-dependent incorporation onto intraluminal vesicles (ILVs) of MVBs. In contrast to the internalization-independent EGF-stimulated activation, UVC/cisplatin-triggered EGFR activation depends on EGFR internalization and intracellular retention. EGFR signalling from this MVB subpopulation delays apoptosis and might contribute to chemoresistance

    Adult stem cell maintenance and tissue regeneration around the clock: do impaired stem cell clocks drive age-associated tissue degeneration?

    Get PDF
    Human adult stem cell research is a highly prolific area in modern tissue engineering as these cells have significant potential to provide future cellular therapies for the world’s increasingly aged population. Cellular therapies require a smart biomaterial to deliver and localise the cell population; protecting and guiding the stem cells toward predetermined lineage-specific pathways. The cells, in turn, can provide protection to biomaterials and increase its longevity. The right combination of stem cells and biomaterials can significantly increase the therapeutic efficacy. Adult stem cells are utilised to target many changes that negatively impact tissue functions with age. Understanding the underlying mechanisms that lead to changes brought about by the ageing process is imperative as ageing leads to many detrimental effects on stem cell activation, maintenance and differentiation. The circadian clock is an evolutionarily conserved timing mechanism that coordinates physiology, metabolism and behavior with the 24 h solar day to provide temporal tissue homeostasis with the external environment. Circadian rhythms deteriorate with age at both the behavioural and molecular levels, leading to age-associated changes in downstream rhythmic tissue physiology in humans and rodent models. In this review, we highlight recent advances in our knowledge of the role of circadian clocks in adult stem cell maintenance, driven by both cell-autonomous and tissue-specific factors, and the mechanisms by which they co-opt various cellular signaling pathways to impose temporal control on stem cell function. Future research investigating pharmacological and lifestyle interventions by which circadian rhythms within adult stem niches can be manipulated will provide avenues for temporally guided cellular therapies and smart biomaterials to ameliorate age-related tissue deterioration and reduce the burden of chronic disease

    Mechanical stretch and chronotherapeutic techniques for progenitor cell transplantation and biomaterials

    Get PDF
    In the body, mesenchymal progenitor cells are subjected to a substantial amount external force from different mechanical stresses, each potentially influences their behaviour and maintenance differentially. Tensile stress, or compression loading are just two of these forces, and here we examine the role of cyclical or dynamic mechanical loading on progenitor cell proliferation and differentiation, as well as on other cellular processes including cell morphology, apoptosis and matrix mineralisation. Moreover, we also examine how mechanical stretch can be used to optimise and ready biomaterials before their implantation, and examine the role of the circadian rhythm, the body’s innate time keeping system, on biomaterial delivery and acceptance. Finally, we also investigate the effect of mechanical stretch on the circadian rhythm of progenitor cells, as research suggests that mechanical stimulation may be sufficient in itself to synchronise the circadian rhythm of human adult progenitor cells alone, and has also been linked to progenitor cell function. If proven correct, this could offer a novel, non- intrusive method by which human adult progenitor cells may be activated or preconditioned, being readied for differentiation, so that they may be more successfully integrated within a host body, thereby improving tissue engineering techniques and the efficacy of cellular therapies

    Comparing circadian dynamics in primary derived stem cells from different sources of human adult tissue

    Get PDF
    Optimising cell/tissue constructs so that they can be successfully accepted and integrated within a host body is essential in modern tissue engineering. To do this, adult stem cells are frequently utilised, but there are many aspects of their environment in vivo that are not completely understood. There is evidence to suggest that circadian rhythms and daily circadian temporal cues have substantial effects on stem cell activation, cell cycle, and differentiation. It was hypothesised that the circadian rhythm in human adult stem cells differs depending on the source of tissue and that different entraining signals exert differential effects depending on the anatomical source. Dexamethasone and rhythmic mechanical stretch were used to synchronise stem cells derived from the bone marrow, tooth dental pulp, and abdominal subcutaneous adipose tissue, and it was experimentally evidenced that these different stem cells differed in their circadian clock properties in response to different synchronisation mechanisms. The more primitive dental pulp-derived stem cells did not respond as well to the chemical synchronisation but showed temporal clock gene oscillations following rhythmic mechanical stretch, suggesting that incorporating temporal circadian information of different human adult stem cells will have profound implications in optimising tissue engineering approaches and stem cell therapies

    Migration of Apicomplexa Across Biological Barriers: The Toxoplasma and Plasmodium Rides

    Get PDF
    The invasive stages of Apicomplexa parasites, called zoites, have been largely studied in in vitro systems, with a special emphasis on their unique gliding and host cell invasive capacities. In contrast, the means by which these parasites reach their destination in their hosts are still poorly understood. We summarize here our current understanding of the cellular basis of in vivo parasitism by two well-studied Apicomplexa zoites, the Toxoplasma tachyzoite and the Plasmodium sporozoite. Despite being close relatives, these two zoites use different strategies to reach their goal and establish infection

    Quantifying short-term dynamics of Parkinson's disease using self-reported symptom data from an internet social network

    Get PDF
    Background: Parkinson’s disease (PD) is an incurable neurological disease with approximately 0.3% prevalence. The hallmark symptom is gradual movement deterioration. Current scientific consensus about disease progression holds that symptoms will worsen smoothly over time unless treated. Accurate information about symptom dynamics is of critical importance to patients, caregivers, and the scientific community for the design of new treatments, clinical decision making, and individual disease management. Long-term studies characterize the typical time course of the disease as an early linear progression gradually reaching a plateau in later stages. However, symptom dynamics over durations of days to weeks remains unquantified. Currently, there is a scarcity of objective clinical information about symptom dynamics at intervals shorter than 3 months stretching over several years, but Internet-based patient self-report platforms may change this. Objective: To assess the clinical value of online self-reported PD symptom data recorded by users of the health-focused Internet social research platform PatientsLikeMe (PLM), in which patients quantify their symptoms on a regular basis on a subset of the Unified Parkinson’s Disease Ratings Scale (UPDRS). By analyzing this data, we aim for a scientific window on the nature of symptom dynamics for assessment intervals shorter than 3 months over durations of several years. Methods: Online self-reported data was validated against the gold standard Parkinson’s Disease Data and Organizing Center (PD-DOC) database, containing clinical symptom data at intervals greater than 3 months. The data were compared visually using quantile-quantile plots, and numerically using the Kolmogorov-Smirnov test. By using a simple piecewise linear trend estimation algorithm, the PLM data was smoothed to separate random fluctuations from continuous symptom dynamics. Subtracting the trends from the original data revealed random fluctuations in symptom severity. The average magnitude of fluctuations versus time since diagnosis was modeled by using a gamma generalized linear model. Results: Distributions of ages at diagnosis and UPDRS in the PLM and PD-DOC databases were broadly consistent. The PLM patients were systematically younger than the PD-DOC patients and showed increased symptom severity in the PD off state. The average fluctuation in symptoms (UPDRS Parts I and II) was 2.6 points at the time of diagnosis, rising to 5.9 points 16 years after diagnosis. This fluctuation exceeds the estimated minimal and moderate clinically important differences, respectively. Not all patients conformed to the current clinical picture of gradual, smooth changes: many patients had regimes where symptom severity varied in an unpredictable manner, or underwent large rapid changes in an otherwise more stable progression. Conclusions: This information about short-term PD symptom dynamics contributes new scientific understanding about the disease progression, currently very costly to obtain without self-administered Internet-based reporting. This understanding should have implications for the optimization of clinical trials into new treatments and for the choice of treatment decision timescales

    Patients' views on dentists' ability to manage medical crises – results of focus group research

    Get PDF
    Background: Australia faces an ageing population which is more medically complicated than in years past, and it is important that we meet public expectations of management of medical emergencies in the dental clinic. No research before has examined in depth the public perception of dentists’ medical emergency management. Aim: To qualitatively assess the publics' perception of medical emergencies in dentistry and their expectations of medical emergency management by dentists. Methods: 12 members of the public associated with a university clinic participated in two focus groups of six persons, where semi-structured discussions were carried out, audio recorded and transcribed, and subsequently underwent comprehensive thematic analysis. Results: Key findings included a high expectation of dentists' general medical knowledge, as well as potential concern regarding a lack of routine medical assessment prior to undertaking dental treatment. Conclusions: Participants expected dentists to be highly proficient at managing medical crises and support the concept of medical emergency management certification for dentists

    Atorvastatin reduces lipopolysaccharide-induced expression of cyclooxygenase-2 in human pulmonary epithelial cells

    Get PDF
    OBJECTIVE: To explore the effects of atorvastatin on expression of cyclooxygenase-2 (COX-2) in human pulmonary epithelial cells (A549). METHODS: A549 cells were incubated in DMEM medium containing lipopolysaccharide (LPS) in the presence or absence of atorvastatin. After incubation, the medium was collected and the amount of prostaglandin E(2 )(PGE(2)) was measured by enzyme-linked immunosorbent assay (ELISA). The cells were harvested, and COX-2 mRNA and protein were analyzed by RT-PCR and western-blot respectively. RESULTS: LPS increased the expression of COX-2 mRNA and production of PGE(2 )in a dose- and time-dependent manner in A549. Induction of COX-2 mRNA and protein by LPS were inhibited by atorvastatin in a dose-dependent manner. Atorvastatin also significantly decreased LPS-induced production of PGE(2). There was a positive correlation between reduced of COX-2 mRNA and decreased of PGE(2 )(r = 0.947, P < 0.05). CONCLUSION: Atorvastatin down-regulates LPS-induced expression of the COX-2 and consequently inhibits production of PGE(2 )in cultured A549 cells

    A Meta-Analysis of the Existing Knowledge of Immunoreactivity against Hepatitis C Virus (HCV)

    Get PDF
    Approximately 3% of the world population is infected by HCV, which represents a major global health challenge. Almost 400 different scientific reports present immunological data related to T cell and antibody epitopes derived from HCV literature. Analysis of all HCV-related epitope hosted in the Immune Epitope Database (IEDB), a repository of freely accessible immune epitope data, revealed more than 1500 and 1900 distinct T cell and antibody epitopes, respectively. The inventory of all data revealed specific trends in terms of the host and the HCV genotypes from which sequences were derived. Upon further analysis we found that this large number of epitopes reflects overlapping structures, and homologous sequences derived from different HCV isolates. To access and visualize this information we developed a novel strategy that assembles large sets of epitope data, maps them onto reference genomes and displays the frequency of positive responses. Compilation of the HCV immune reactivity from hundreds of different studies, revealed a complex and thorough picture of HCV immune epitope data to date. The results pinpoint areas of more intense reactivity or research activities at the level of antibody, CD4 and CD8 responses for each of the individual HCV proteins. In general, the areas targeted by the different effector immune functions were distinct and antibody reactivity was positively correlated with hydrophilicity, while T cell reactivity correlated with hydrophobicity. At the sequence level, epitopes frequently recognized by both T cell and B cell correlated with low variability, and our analysis thus highlighted areas of potential interest for practical applications. The human reactivity was further analyzed to pinpoint differential patterns of reactivity associated with acute versus chronic infection, to reveal the apparent impact of glycosylation on T cell, but not antibody responses, and to highlight a paucity of studies involved antibody epitopes associated with virus neutralization

    Transition of plasmodium sporozoites into liver stage-like forms is regulated by the RNA binding protein pumilio

    Get PDF
    Many eukaryotic developmental and cell fate decisions that are effected post-transcriptionally involve RNA binding proteins as regulators of translation of key mRNAs. In malaria parasites (Plasmodium spp.), the development of round, non-motile and replicating exo-erythrocytic liver stage forms from slender, motile and cell-cycle arrested sporozoites is believed to depend on environmental changes experienced during the transmission of the parasite from the mosquito vector to the vertebrate host. Here we identify a Plasmodium member of the RNA binding protein family PUF as a key regulator of this transformation. In the absence of Pumilio-2 (Puf2) sporozoites initiate EEF development inside mosquito salivary glands independently of the normal transmission-associated environmental cues. Puf2- sporozoites exhibit genome-wide transcriptional changes that result in loss of gliding motility, cell traversal ability and reduction in infectivity, and, moreover, trigger metamorphosis typical of early Plasmodium intra-hepatic development. These data demonstrate that Puf2 is a key player in regulating sporozoite developmental control, and imply that transformation of salivary gland-resident sporozoites into liver stage-like parasites is regulated by a post-transcriptional mechanism
    • …
    corecore