96 research outputs found

    Heat Shock Protein 70 family members interact with Crimean-Congo hemorrhagic fever virus and Hazara virus nucleocapsid proteins and perform a functional role in the nairovirus replication cycle

    Get PDF
    The Nairovirus genus of the Bunyaviridae family contains serious human and animal pathogens classified within multiple serogroups and species. Of these serogroups, the Crimean-Congo hemorrhagic fever virus (CCHFV) serogroup comprises sole members CCHFV and Hazara virus (HAZV). CCHFV is an emerging zoonotic virus that causes often-fatal hemorrhagic fever in infected humans for which preventative or therapeutic strategies are not available. In contrast HAZV is non-pathogenic to humans, and thus represents an excellent model to study aspects of CCHFV biology under more accessible biological containment. The three RNA segments that form the nairovirus genome are encapsidated by the viral nucleocapsid protein (N) to form ribonucleoprotein (RNP) complexes that are substrates for RNA synthesis and packaging into virus particles. We used quantitative proteomics to identify cellular interaction partners of CCHFV N, and identified robust interactions with cellular chaperones. These interactions were validated using immunological methods, and the specific interaction between native CCHFV N and cellular chaperones of the HSP70 family was confirmed during live CCHFV infection. Using infectious HAZV we showed for the first time that the nairovirus N-HSP70 association was maintained within both infected cells and virus particles, where N is assembled as RNPs. Reduction of active HSP70 levels in cells using small molecule inhibitors significantly reduced HAZV titres, and a model for chaperone function in the context of high genetic variability is proposed. These results suggest chaperones of the HSP70 family are required for nairovirus replication and thus represent a genetically stable cellular therapeutic target for preventing nairovirus-mediated disease

    Sense of coherence predicts post-myocardial infarction trajectory of leisure time physical activity: a prospective cohort study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Physical activity confers a survival advantage after myocardial infarction (MI), yet the majority of post-MI patients are not regularly active. Since sense of coherence (SOC) has been associated with health outcomes and some health behaviours, we investigated whether it plays a role in post-MI physical activity.</p> <p>We examined the predictive role of SOC in the long-term trajectory of leisure time physical activity (LTPA) after MI using a prospective cohort design.</p> <p>Methods</p> <p>A cohort of 643 patients aged ≤ 65 years admitted to hospital in central Israel with incident MI between February 1992 and February 1993 were followed up for 13 years. Socioeconomic, clinical and psychological factors, including SOC, were assessed at baseline, and LTPA was self-reported on 5 separate occasions during follow-up. The predictive role of SOC in long-term trajectory of LTPA was assessed using generalized estimating equations.</p> <p>Results</p> <p>SOC was consistently associated with engagement in LTPA throughout follow-up. Patients in the lowest SOC tertile had almost twice the odds (odds ratio,1.99; 95% confidence interval,1.52-2.60) of decreasing their engagement in LTPA as those in the highest tertile. A strong association remained after controlling for disease severity, depression, sociodemographic and clinical factors.</p> <p>Conclusion</p> <p>Our evidence suggests that SOC predicts LTPA trajectory post-MI. Assessment of SOC can help identify high-risk MI survivors, who may require additional help in following secondary prevention recommendations which can dramatically improve prognosis.</p

    Skeeter Buster: A Stochastic, Spatially Explicit Modeling Tool for Studying Aedes aegypti Population Replacement and Population Suppression Strategies

    Get PDF
    Dengue is a viral disease that affects approximately 50 million people annually, and is estimated to result in 12,500 fatalities. Dengue viruses are vectored by mosquitoes, predominantly by the species Aedes aegypti. Because there is currently no vaccine or specific treatment, the only available strategy to reduce dengue transmission is to control the populations of these mosquitoes. This can be achieved by traditional approaches such as insecticides, or by recently developed genetic methods that propose the release of mosquitoes genetically engineered to be unable to transmit dengue viruses. The expected outcome of different control strategies can be compared by simulating the population dynamics and genetics of mosquitoes at a given location. Development of optimal control strategies can then be guided by the modeling approach. To that end, we introduce a new modeling tool called Skeeter Buster. This model describes the dynamics and the genetics of Ae. aegypti populations at a very fine scale, simulating the contents of individual houses, and even the individual water-holding containers in which mosquito larvae reside. Skeeter Buster can be used to compare the predicted outcomes of multiple control strategies, traditional or genetic, making it an important tool in the fight against dengue

    Anopheles larval abundance and diversity in three rice agro-village complexes Mwea irrigation scheme, central Kenya

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The diversity and abundance of <it>Anopheles </it>larvae has significant influence on the resulting adult mosquito population and hence the dynamics of malaria transmission. Studies were conducted to examine larval habitat dynamics and ecological factors affecting survivorship of aquatic stages of malaria vectors in three agro-ecological settings in Mwea, Kenya.</p> <p>Methods</p> <p>Three villages were selected based on rice husbandry and water management practices. Aquatic habitats in the 3 villages representing planned rice cultivation (Mbui Njeru), unplanned rice cultivation (Kiamachiri) and non-irrigated (Murinduko) agro-ecosystems were sampled every 2 weeks to generate stage-specific estimates of mosquito larval densities, relative abundance and diversity. Records of distance to the nearest homestead, vegetation coverage, surface debris, turbidity, habitat stability, habitat type, rice growth stage, number of rice tillers and percent <it>Azolla </it>cover were taken for each habitat.</p> <p>Results</p> <p>Captures of early, late instars and pupae accounted for 78.2%, 10.9% and 10.8% of the total <it>Anopheles </it>immatures sampled (n = 29,252), respectively. There were significant differences in larval abundance between 3 agro-ecosystems. The village with 'planned' rice cultivation had relatively lower <it>Anopheles </it>larval densities compared to the villages where 'unplanned' or non-irrigated. Similarly, species composition and richness was higher in the two villages with either 'unplanned' or limited rice cultivation, an indication of the importance of land use patterns on diversity of larval habitat types. Rice fields and associated canals were the most productive habitat types while water pools and puddles were important for short periods during the rainy season. Multiple logistic regression analysis showed that presence of other invertebrates, percentage <it>Azolla </it>cover, distance to nearest homestead, depth and water turbidity were the best predictors for <it>Anopheles </it>mosquito larval abundance.</p> <p>Conclusion</p> <p>These results suggest that agricultural practices have significant influence on mosquito species diversity and abundance and that certain habitat characteristics favor production of malaria vectors. These factors should be considered when implementing larval control strategies which should be targeted based on habitat productivity and water management.</p

    Down-Regulation of DNA Mismatch Repair Enhances Initiation and Growth of Neuroblastoma and Brain Tumour Multicellular Spheroids

    Get PDF
    Multicellular tumour spheroid (MCTS) cultures are excellent model systems for simulating the development and microenvironmental conditions of in vivo tumour growth. Many documented cell lines can generate differentiated MCTS when cultured in suspension or in a non-adhesive environment. While physiological and biochemical properties of MCTS have been extensively characterized, insight into the events and conditions responsible for initiation of these structures is lacking. MCTS are formed by only a small subpopulation of cells during surface-associated growth but the processes responsible for this differentiation are poorly understood and have not been previously studied experimentally. Analysis of gene expression within spheroids has provided clues but to date it is not known if the observed differences are a cause or consequence of MCTS growth. One mechanism linked to tumourigenesis in a number of cancers is genetic instability arising from impaired DNA mismatch repair (MMR). This study aimed to determine the role of MMR in MCTS initiation and development. Using surface-associated N2a and CHLA-02-ATRT culture systems we have investigated the impact of impaired MMR on MCTS growth. Analysis of the DNA MMR genes MLH1 and PMS2 revealed both to be significantly down-regulated at the mRNA level compared with non-spheroid-forming cells. By using small interfering RNA (siRNA) against these genes we show that silencing of MLH1 and PMS2 enhances both MCTS initiation and subsequent expansion. This effect was prolonged over several passages following siRNA transfection. Down-regulation of DNA MMR can contribute to tumour initiation and progression in N2a and CHLA-02-ATRT MCTS models. Studies of surface-associated MCTS differentiation may have broader applications in studying events in the initiation of cancer foci

    Msh2 Blocks an Alternative Mechanism for Non-Homologous Tail Removal during Single-Strand Annealing in Saccharomyces cerevisiae

    Get PDF
    Chromosomal translocations are frequently observed in cells exposed to agents that cause DNA double-strand breaks (DSBs), such as ionizing radiation and chemotherapeutic drugs, and are often associated with tumors in mammals. Recently, translocation formation in the budding yeast, Saccharomyces cerevisiae, has been found to occur at high frequencies following the creation of multiple DSBs adjacent to repetitive sequences on non-homologous chromosomes. The genetic control of translocation formation and the chromosome complements of the clones that contain translocations suggest that translocation formation occurs by single-strand annealing (SSA). Among the factors important for translocation formation by SSA is the central mismatch repair (MMR) and homologous recombination (HR) factor, Msh2. Here we describe the effects of several msh2 missense mutations on translocation formation that suggest that Msh2 has separable functions in stabilizing annealed single strands, and removing non-homologous sequences from their ends. Additionally, interactions between the msh2 alleles and a null allele of RAD1, which encodes a subunit of a nuclease critical for the removal of non-homologous tails suggest that Msh2 blocks an alternative mechanism for removing these sequences. These results suggest that Msh2 plays multiple roles in the formation of chromosomal translocations following acute levels of DNA damage

    Replication and active partition of integrative and conjugative elements (ICEs) of the SXT/R391 family : the line between ICEs and conjugative plasmids is getting thinner

    Get PDF
    Integrative and Conjugative Elements (ICEs) of the SXT/R391 family disseminate multidrug resistance among pathogenic Gammaproteobacteria such as Vibrio cholerae. SXT/R391 ICEs are mobile genetic elements that reside in the chromosome of their host and eventually self-transfer to other bacteria by conjugation. Conjugative transfer of SXT/R391 ICEs involves a transient extrachromosomal circular plasmid-like form that is thought to be the substrate for single-stranded DNA translocation to the recipient cell through the mating pore. This plasmid-like form is thought to be non-replicative and is consequently expected to be highly unstable. We report here that the ICE R391 of Providencia rettgeri is impervious to loss upon cell division. We have investigated the genetic determinants contributing to R391 stability. First, we found that a hipAB-like toxin/antitoxin system improves R391 stability as its deletion resulted in a tenfold increase of R391 loss. Because hipAB is not a conserved feature of SXT/R391 ICEs, we sought for alternative and conserved stabilization mechanisms. We found that conjugation itself does not stabilize R391 as deletion of traG, which abolishes conjugative transfer, did not influence the frequency of loss. However, deletion of either the relaxase-encoding gene traI or the origin of transfer (oriT) led to a dramatic increase of R391 loss correlated with a copy number decrease of its plasmid-like form. This observation suggests that replication initiated at oriT by TraI is essential not only for conjugative transfer but also for stabilization of SXT/R391 ICEs. Finally, we uncovered srpMRC, a conserved locus coding for two proteins distantly related to the type II (actin-type ATPase) parMRC partitioning system of plasmid R1. R391 and plasmid stabilization assays demonstrate that srpMRC is active and contributes to reducing R391 loss. While partitioning systems usually stabilizes low-copy plasmids, srpMRC is the first to be reported that stabilizes a family of ICEs

    The relationship between subtypes of depression and cardiovascular disease: a systematic review of biological models

    Get PDF
    A compelling association has been observed between cardiovascular disease (CVD) and depression, suggesting individuals with depression to be at significantly higher risk for CVD and CVD-related mortality. Systemic immune activation, hypothalamic–pituitary–adrenal (HPA) axis hyperactivity, arterial stiffness and endothelial dysfunction have been frequently implicated in this relationship. Although a differential epidemiological association between CVD and depression subtypes is evident, it has not been determined if this indicates subtype specific biological mechanisms. A comprehensive systematic literature search was conducted using PubMed and PsycINFO databases yielding 147 articles for this review. A complex pattern of systemic immune activation, endothelial dysfunction and HPA axis hyperactivity is suggestive of the biological relationship between CVD and depression subtypes. The findings of this review suggest that diagnostic subtypes rather than a unifying model of depression should be considered when investigating the bidirectional biological relationship between CVD and depression. The suggested model of a subtype-specific biological relationship between depression and CVDs has implications for future research and possibly for diagnostic and therapeutic processes
    corecore