59 research outputs found
A meta-analysis of long-term effects of conservation agriculture on maize grain yield under rain-fed conditions
Conservation agriculture involves reduced tillage, permanent soil cover and crop rotations to enhance soil fertility and to supply food from a dwindling land resource. Recently, conservation agriculture has been promoted in Southern Africa, mainly for maize-based farming systems. However, maize yields under rain-fed conditions are often variable. There is therefore a need to identify factors that influence crop yield under conservation agriculture and rain-fed conditions. Here, we studied maize grain yield data from experiments lasting 5 years and more under rain-fed conditions. We assessed the effect of long-term tillage and residue retention on maize grain yield under contrasting soil textures, nitrogen input and climate. Yield variability was measured by stability analysis. Our results show an increase in maize yield over time with conservation agriculture practices that include rotation and high input use in low rainfall areas. But we observed no difference in system stability under those conditions. We observed a strong relationship between maize grain yield and annual rainfall. Our meta-analysis gave the following findings: (1) 92% of the data show that mulch cover in high rainfall areas leads to lower yields due to waterlogging; (2) 85% of data show that soil texture is important in the temporal development of conservation agriculture effects, improved yields are likely on well-drained soils; (3) 73% of the data show that conservation agriculture practices require high inputs especially N for improved yield; (4) 63% of data show that increased yields are obtained with rotation but calculations often do not include the variations in rainfall within and between seasons; (5) 56% of the data show that reduced tillage with no mulch cover leads to lower yields in semi-arid areas; and (6) when adequate fertiliser is available, rainfall is the most important determinant of yield in southern Africa. It is clear from our results that conservation agriculture needs to be targeted and adapted to specific biophysical conditions for improved impact
Testing Multiple Coordination Constraints with a Novel Bimanual Visuomotor Task
The acquisition of a new bimanual skill depends on several motor coordination constraints. To date, coordination constraints have often been tested relatively independently of one another, particularly with respect to isofrequency and multifrequency rhythms. Here, we used a new paradigm to test the interaction of multiple coordination constraints. Coordination constraints that were tested included temporal complexity, directionality, muscle grouping, and hand dominance. Twenty-two healthy young adults performed a bimanual dial rotation task that required left and right hand coordination to track a moving target on a computer monitor. Two groups were compared, either with or without four days of practice with augmented visual feedback. Four directional patterns were tested such that both hands moved either rightward (clockwise), leftward (counterclockwise), inward or outward relative to each other. Seven frequency ratios (3∶1, 2∶1, 3∶2, 1∶1, 2∶3. 1∶2, 1∶3) between the left and right hand were introduced. As expected, isofrequency patterns (1∶1) were performed more successfully than multifrequency patterns (non 1∶1). In addition, performance was more accurate when participants were required to move faster with the dominant right hand (1∶3, 1∶2 and 2∶3) than with the non-dominant left hand (3∶1, 2∶1, 3∶2). Interestingly, performance deteriorated as the relative angular velocity between the two hands increased, regardless of whether the required frequency ratio was an integer or non-integer. This contrasted with previous finger tapping research where the integer ratios generally led to less error than the non-integer ratios. We suggest that this is due to the different movement topologies that are required of each paradigm. Overall, we found that this visuomotor task was useful for testing the interaction of multiple coordination constraints as well as the release from these constraints with practice in the presence of augmented visual feedback
Antioxidant effects of β-carotene, but not of retinol and vitamin E, in orbital fibroblasts from patients with Graves’ orbitopathy (GO)
Background: Oxidative stress is involved in the pathogenesis of Graves' orbitopathy (GO) and several antioxidant agents, namely, selenium, quercetin, enalapril, vitamin C, N-acetyl-l-cysteine, and melatonin, have been shown to reduce oxidative stress and its consequences in primary culture of orbital fibroblasts. In addition, selenium is effective for the treatment of mild GO. Here, we investigated the action of three additional antioxidants in orbital fibroblasts, namely, retinol, Î2-carotene, and vitamin E. Methods: Primary cultures of orbital fibroblasts were established from GO patients and control subjects. To induce oxidative stress, cells were treated with H2O2, after which glutathione disulfide (GSSG) (a parameter of oxidative stress), cell proliferation, hyaluronic acid, TNFα, IFNÎ3, and IL1Î2 were measured. Results: H2O2-dependent oxidative stress (augmented GSSG) was associated with increased cell proliferation and cytokine release. All the three antioxidant substances reduced GSSG in both GO and control fibroblasts.β-carotene reduced proliferation in GO, but not in control fibroblasts. IL1Î2 was reduced by all three substances. Retinol reduced IFNÎ3 in GO and control fibroblasts. Conclusions: Our study supports an antioxidant role of retinol, β-carotene, and vitamin E in orbital fibroblasts from patients with GO and provides a basis for a possible clinical use these substances
- …