467 research outputs found

    A phase 2 multicenter study of ublituximab, a novel glycoengineered anti-CD20 monoclonal antibody, in patients with relapsing forms of multiple sclerosis.

    Get PDF
    Background: Ublituximab, a novel monoclonal antibody (mAb) targeting a unique epitope on the CD20 antigen, is glycoengineered for enhanced B-cell targeting through antibody-dependent cellular cytotoxicity (ADCC). Greater ADCC may allow lower doses and shorter infusion times versus other anti-CD20 mAbs. Objective: The objective was to determine optimal dose, infusion time, and activity of ublituximab in relapsing multiple sclerosis. Methods: This is a phase 2, placebo-controlled study. Patients received three ublituximab infusions (150 mg over 1-4 hours on day 1 and 450-600 mg over 1-3 hours on day 15 and week 24) in six dosing cohorts. The primary endpoint was B-cell depletion. Results: In all cohorts (N = 48), median B-cell depletion was >99% by week 4, maintained at weeks 24 and 48. Most common adverse events (AEs) were infusion-related reactions (all grade 1-2), with no apparent increased incidence at shorter infusion times. There were no AE-related discontinuations. At weeks 24 and 48, no T1 gadolinium-enhancing lesions (p = 0.003) and a 10.6% decrease in T2 lesion volume (p = 0.002) were detected. The annualized relapse rate was 0.07; 93% remained relapse free on study. Overall, 74% of patients had no evidence of disease activity (NEDA). Conclusion: Ublituximab was safely infused as rapid as 1 hour, producing robust B-cell depletion and profound reductions in magnetic resonance imaging (MRI) activity and relapses

    Biophysical suitability, economic pressure and land-cover change: a global probabilistic approach and insights for REDD+

    Get PDF
    There has been a concerted effort by the international scientific community to understand the multiple causes and patterns of land-cover change to support sustainable land management. Here, we examined biophysical suitability, and a novel integrated index of “Economic Pressure on Land” (EPL) to explain land cover in the year 2000, and estimated the likelihood of future land-cover change through 2050, including protected area effectiveness. Biophysical suitability and EPL explained almost half of the global pattern of land cover (R 2 = 0.45), increasing to almost two-thirds in areas where a long-term equilibrium is likely to have been reached (e.g. R 2 = 0.64 in Europe). We identify a high likelihood of future land-cover change in vast areas with relatively lower current and past deforestation (e.g. the Congo Basin). Further, we simulated emissions arising from a “business as usual” and two reducing emissions from deforestation and forest degradation (REDD) scenarios by incorporating data on biomass carbon. As our model incorporates all biome types, it highlights a crucial aspect of the ongoing REDD + debate: if restricted to forests, “cross-biome leakage” would severely reduce REDD + effectiveness for climate change mitigation. If forests were protected from deforestation yet without measures to tackle the drivers of land-cover change, REDD + would only reduce 30 % of total emissions from land-cover change. Fifty-five percent of emissions reductions from forests would be compensated by increased emissions in other biomes. These results suggest that, although REDD + remains a very promising mitigation tool, implementation of complementary measures to reduce land demand is necessary to prevent this leakage

    Large-scale synchrony of gap dynamics and the distribution of understory tree species in maple-beech forests

    Get PDF
    Large-scale synchronous variations in community dynamics are well documented for a vast array of organisms, but are considerably less understood for forest trees. Because of temporal variations in canopy gap dynamics, forest communities—even old-growth ones—are never at equilibrium at the stand scale. This paucity of equilibrium may also be true at the regional scale. Our objectives were to determine (1) if nonequilibrium dynamics caused by temporal variations in the formation of canopy gaps are regionally synchronized, and (2) if spatiotemporal variations in canopy gap formation aVect the relative abundance of tree species in the understory. We examined these questions by analyzing variations in the suppression and release history of Acer saccharum Marsh. and Fagus grandifolia Ehrh. from 481 growth series of understory saplings taken from 34 mature stands. We observed that (1) the proportion of stems in release as a function of time exhibited a U-shaped pattern over the last 35 years, with the lowest levels occurring during 1975–1985, and that (2) the response to this in terms of species composition was that A. saccharum became more abundant at sites that had the highest proportion of stems in release during 1975–1985. We concluded that the understory dynamics, typically thought of as a stand-scale process, may be regionally synchronized

    The initial experience of electronic brachytherapy for the treatment of non-melanoma skin cancer

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Millions of people are diagnosed with non-melanoma skin cancers (NMSC) worldwide each year. While surgical approaches are the standard treatment, some patients are appropriate candidates for radiation therapy for NMSC. High dose rate (HDR) brachytherapy using surface applicators has shown efficacy in the treatment of NMSC and shortens the radiation treatment schedule by using a condensed hypofractionated approach. An electronic brachytherapy (EBT) system permits treatment of NMSC without the use of a radioactive isotope.</p> <p>Methods</p> <p>Data were collected retrospectively from patients treated from July 2009 through March 2010. Pre-treatment biopsy was performed to confirm a malignant cutaneous diagnosis. A CT scan was performed to assess lesion depth for treatment planning, and an appropriate size of surface applicator was selected to provide an acceptable margin. An HDR EBT system delivered a dose of 40.0 Gy in eight fractions twice weekly with 48 hours between fractions, prescribed to a depth of 3-7 mm. Treatment feasibility, acute safety, efficacy outcomes, and cosmetic results were assessed.</p> <p>Results</p> <p>Thirty-seven patients (mean age 72.5 years) with 44 cutaneous malignancies were treated. Of 44 lesions treated, 39 (89%) were T1, 1 (2%) Tis, 1 (2%) T2, and 3 (7%) lesions were recurrent. Lesion locations included the nose for 16 lesions (36.4%), ear 5 (11%), scalp 5 (11%), face 14 (32%), and an extremity for 4 (9%). Median follow-up was 4.1 months. No severe toxicities occurred. Cosmesis ratings were good to excellent for 100% of the lesions at follow-up.</p> <p>Conclusions</p> <p>The early outcomes of EBT for the treatment of NMSC appear to show acceptable acute safety and favorable cosmetic outcomes. Using a hypofractionated approach, EBT provides a convenient treatment schedule.</p

    Impacts of climate change on plant diseases – opinions and trends

    Get PDF
    There has been a remarkable scientific output on the topic of how climate change is likely to affect plant diseases in the coming decades. This review addresses the need for review of this burgeoning literature by summarizing opinions of previous reviews and trends in recent studies on the impacts of climate change on plant health. Sudden Oak Death is used as an introductory case study: Californian forests could become even more susceptible to this emerging plant disease, if spring precipitations will be accompanied by warmer temperatures, although climate shifts may also affect the current synchronicity between host cambium activity and pathogen colonization rate. A summary of observed and predicted climate changes, as well as of direct effects of climate change on pathosystems, is provided. Prediction and management of climate change effects on plant health are complicated by indirect effects and the interactions with global change drivers. Uncertainty in models of plant disease development under climate change calls for a diversity of management strategies, from more participatory approaches to interdisciplinary science. Involvement of stakeholders and scientists from outside plant pathology shows the importance of trade-offs, for example in the land-sharing vs. sparing debate. Further research is needed on climate change and plant health in mountain, boreal, Mediterranean and tropical regions, with multiple climate change factors and scenarios (including our responses to it, e.g. the assisted migration of plants), in relation to endophytes, viruses and mycorrhiza, using long-term and large-scale datasets and considering various plant disease control methods

    Influences of mentoring functions on job satisfaction and organizational commitment of graduate employees

    Get PDF
    Abstract: A significant percentage of the workforce, within the construction sector is nearing retirement age over the next ten years. These employees have acquired a tremendous amount of knowledge about how things work, how to get things done and who to go to when problems arise. Losing their expertise and experience could significantly reduce efficiency, resulting in costly mistakes, unexpected quality problems, or significant disruptions in services and or performance. The business world has long known and relied upon mentoring as a proven technique for developing in house talent. Previous studies proved that the implementation of mentoring programme is beneficial for enhancing employee skills and attitudes. Few researchers are devoted to exploring the impact. This paper is aimed at examining the effects of mentoring functions on the job satisfaction and organizational commitment of new graduates in the South African construction industry..

    Distinct External Signals Trigger Sequential Release of Apical Organelles during Erythrocyte Invasion by Malaria Parasites

    Get PDF
    The invasion of erythrocytes by Plasmodium merozoites requires specific interactions between host receptors and parasite ligands. Parasite proteins that bind erythrocyte receptors during invasion are localized in apical organelles called micronemes and rhoptries. The regulated secretion of microneme and rhoptry proteins to the merozoite surface to enable receptor binding is a critical step in the invasion process. The sequence of these secretion events and the external signals that trigger release are not known. We have used time-lapse video microscopy to study changes in intracellular calcium levels in Plasmodium falciparum merozoites during erythrocyte invasion. In addition, we have developed flow cytometry based methods to measure relative levels of cytosolic calcium and study surface expression of apical organelle proteins in P. falciparum merozoites in response to different external signals. We demonstrate that exposure of P. falciparum merozoites to low potassium ion concentrations as found in blood plasma leads to a rise in cytosolic calcium levels through a phospholipase C mediated pathway. Rise in cytosolic calcium triggers secretion of microneme proteins such as the 175 kD erythrocyte binding antigen (EBA175) and apical membrane antigen-1 (AMA-1) to the merozoite surface. Subsequently, interaction of EBA175 with glycophorin A (glyA), its receptor on erythrocytes, restores basal cytosolic calcium levels and triggers release of rhoptry proteins. Our results identify for the first time the external signals responsible for the sequential release of microneme and rhoptry proteins during erythrocyte invasion and provide a starting point for the dissection of signal transduction pathways involved in regulated exocytosis of these key apical organelles. Signaling pathway components involved in apical organelle discharge may serve as novel targets for drug development since inhibition of microneme and rhoptry secretion can block invasion and limit blood-stage parasite growth

    Control de cambios / Rastrea los cambios / El camino cambia: Reflexiones sobre un mundo en transformación

    Get PDF
    “Track changes: Reflecting on a transforming world” was the theme chosen to invite panels, papers, posters and alternative presentations to be part of the 2019 international congress of SIEF that was held in Santiago de Compostela, Galicia (Spain). This introduction includes a description of the content of the congress, the rationale of the choice of plenaries and some reflections about the outcomes of the congress.El lema elegido para presentar paneles, ponencias, posters y presentaciones en formatos alternativos para el congreso internacional 2019 de SIEF -que tuvo lugar en Santiago de Compostela, Galicia (España)- fue&nbsp;“Track changes: Reflecting on a transforming world”.&nbsp;Esta introducción incluye una descripción del contenido del congreso, la idea para la elección de las plenarias y algunas reflexiones sobre los resultados del congreso. &nbsp

    Utilisation of an operative difficulty grading scale for laparoscopic cholecystectomy

    Get PDF
    Background A reliable system for grading operative difficulty of laparoscopic cholecystectomy would standardise description of findings and reporting of outcomes. The aim of this study was to validate a difficulty grading system (Nassar scale), testing its applicability and consistency in two large prospective datasets. Methods Patient and disease-related variables and 30-day outcomes were identified in two prospective cholecystectomy databases: the multi-centre prospective cohort of 8820 patients from the recent CholeS Study and the single-surgeon series containing 4089 patients. Operative data and patient outcomes were correlated with Nassar operative difficultly scale, using Kendall’s tau for dichotomous variables, or Jonckheere–Terpstra tests for continuous variables. A ROC curve analysis was performed, to quantify the predictive accuracy of the scale for each outcome, with continuous outcomes dichotomised, prior to analysis. Results A higher operative difficulty grade was consistently associated with worse outcomes for the patients in both the reference and CholeS cohorts. The median length of stay increased from 0 to 4 days, and the 30-day complication rate from 7.6 to 24.4% as the difficulty grade increased from 1 to 4/5 (both p < 0.001). In the CholeS cohort, a higher difficulty grade was found to be most strongly associated with conversion to open and 30-day mortality (AUROC = 0.903, 0.822, respectively). On multivariable analysis, the Nassar operative difficultly scale was found to be a significant independent predictor of operative duration, conversion to open surgery, 30-day complications and 30-day reintervention (all p < 0.001). Conclusion We have shown that an operative difficulty scale can standardise the description of operative findings by multiple grades of surgeons to facilitate audit, training assessment and research. It provides a tool for reporting operative findings, disease severity and technical difficulty and can be utilised in future research to reliably compare outcomes according to case mix and intra-operative difficulty

    A Microhomology-Mediated Break-Induced Replication Model for the Origin of Human Copy Number Variation

    Get PDF
    Chromosome structural changes with nonrecurrent endpoints associated with genomic disorders offer windows into the mechanism of origin of copy number variation (CNV). A recent report of nonrecurrent duplications associated with Pelizaeus-Merzbacher disease identified three distinctive characteristics. First, the majority of events can be seen to be complex, showing discontinuous duplications mixed with deletions, inverted duplications, and triplications. Second, junctions at endpoints show microhomology of 2–5 base pairs (bp). Third, endpoints occur near pre-existing low copy repeats (LCRs). Using these observations and evidence from DNA repair in other organisms, we derive a model of microhomology-mediated break-induced replication (MMBIR) for the origin of CNV and, ultimately, of LCRs. We propose that breakage of replication forks in stressed cells that are deficient in homologous recombination induces an aberrant repair process with features of break-induced replication (BIR). Under these circumstances, single-strand 3′ tails from broken replication forks will anneal with microhomology on any single-stranded DNA nearby, priming low-processivity polymerization with multiple template switches generating complex rearrangements, and eventual re-establishment of processive replication
    corecore