3,541 research outputs found

    Sound field planarity characterized by superdirective beamforming

    Full text link
    The ability to replicate a plane wave represents an essential element of spatial sound field reproduction. In sound field synthesis, the desired field is often formulated as a plane wave and the error minimized; for other sound field control methods, the energy density or energy ratio is maximized. In all cases and further to the reproduction error, it is informative to characterize how planar the resultant sound field is. This paper presents a method for quantifying a region's acoustic planarity by superdirective beamforming with an array of microphones, which analyzes the azimuthal distribution of impinging waves and hence derives the planarity. Estimates are obtained for a variety of simulated sound field types, tested with respect to array orientation, wavenumber, and number of microphones. A range of microphone configurations is examined. Results are compared with delay-and-sum beamforming, which is equivalent to spatial Fourier decomposition. The superdirective beamformer provides better characterization of sound fields, and is effective with a moderate number of omni-directional microphones over a broad frequency range. Practical investigation of planarity estimation in real sound fields is needed to demonstrate its validity as a physical sound field evaluation measure. © 2013 Acoustical Society of America

    Locomotor adaptation to a powered ankle-foot orthosis depends on control method

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>We studied human locomotor adaptation to powered ankle-foot orthoses with the intent of identifying differences between two different orthosis control methods. The first orthosis control method used a footswitch to provide bang-bang control (a kinematic control) and the second orthosis control method used a proportional myoelectric signal from the soleus (a physiological control). Both controllers activated an artificial pneumatic muscle providing plantar flexion torque.</p> <p>Methods</p> <p>Subjects walked on a treadmill for two thirty-minute sessions spaced three days apart under either footswitch control (n = 6) or myoelectric control (n = 6). We recorded lower limb electromyography (EMG), joint kinematics, and orthosis kinetics. We compared stance phase EMG amplitudes, correlation of joint angle patterns, and mechanical work performed by the powered orthosis between the two controllers over time.</p> <p>Results</p> <p>During steady state at the end of the second session, subjects using proportional myoelectric control had much lower soleus and gastrocnemius activation than the subjects using footswitch control. The substantial decrease in triceps surae recruitment allowed the proportional myoelectric control subjects to walk with ankle kinematics close to normal and reduce negative work performed by the orthosis. The footswitch control subjects walked with substantially perturbed ankle kinematics and performed more negative work with the orthosis.</p> <p>Conclusion</p> <p>These results provide evidence that the choice of orthosis control method can greatly alter how humans adapt to powered orthosis assistance during walking. Specifically, proportional myoelectric control results in larger reductions in muscle activation and gait kinematics more similar to normal compared to footswitch control.</p

    Morbid Obesity with Achalasia: A Surgical Challenge

    Get PDF
    Achalasia is a relatively rare medical condition that is classically not associated with obesity. The surgical treatment of a simultaneous occurrence of these two diseases requires careful consideration, and only a few reports can be found in the literature combining a Heller myotomy with gastric bypass, duodenal switch, or gastric banding. We report the case of a 69-year-old female patient with early achalasia and obesity who underwent simultaneous laparoscopic gastric sleeve resection and robotic Heller myotomy. No intra- or postoperative complications occurred. A follow-up at 6 weeks showed a significant weight loss and resolved symptoms of achalasia. The case illustrates that a simultaneous gastric sleeve resection and robotic Heller myotomy might be an option for the treatment of concurrent obesity and achalasia

    Early menopause, association with tobacco smoking, coffee consumption and other lifestyle factors: a cross-sectional study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Early onset of menopause is a risk factor for several health problems. The objective was primarily to investigate the association between early menopause and current, past active and passive smoking. A second aim was to investigate the association between coffee and alcohol consumption and early menopause.</p> <p>Methods</p> <p>The present population-based cross-sectional study included a sub-sample of 2123 postmenopausal women born in 1940–41 who participated in the Oslo Health Study. Early menopause was defined as menopause occurring at an age of less than 45 years. We applied logistic regression analyses (crude and adjusted odds ratio (OR)) to examine the association between early menopause and selected lifestyle factors.</p> <p>Results</p> <p>Current smoking was significantly associated with early menopause (adj. OR, 1.59; 95% CI, 1.11–2.28). Stopping smoking more than 10 years before menopause considerably reduced the risk of early menopause (adj. OR, 0.13; 95% CI, 0.05–0.33). Total exposure to smoking (the product of number of cigarettes per day and time as a smoker) was positively related to early menopause and, at the highest doses, nearly doubled the odds (adj. OR, 1.93; 95% CI, 1.12–3.30). These data suggest a possible dose-response relationship between total exposure to smoking and early menopause, but no dose-response relationship was detected for the other variables examined. We found no significant association of coffee or alcohol consumption with early menopause. Of the lifestyle factors tested, high educational level (adj. OR, 0.50; 95% CI, 0.34–0.72) and high social participation (adj. OR, 0.60, 95% CI, 0.39–0.98) were negatively associated with early menopause.</p> <p>Conclusion</p> <p>This cross-sectional study shows an association between current smoking and early menopause. The data also suggest that the earlier a woman stops smoking the more protected she is from early menopause. Early menopause was not significantly associated with passive smoking, or alcohol or coffee consumption.</p

    Increased ventral striatal volume in college-aged binge drinkers

    Get PDF
    BACKGROUND Binge drinking is a serious public health issue associated with cognitive, physiological, and anatomical differences from healthy individuals. No studies, however, have reported subcortical grey matter differences in this population. To address this, we compared the grey matter volumes of college-age binge drinkers and healthy controls, focusing on the ventral striatum, hippocampus and amygdala. METHOD T1-weighted images of 19 binge drinkers and 19 healthy volunteers were analyzed using voxel-based morphometry. Structural data were also covaried with Alcohol Use Disorders Identification Test (AUDIT) scores. Cluster-extent threshold and small volume corrections were both used to analyze imaging data. RESULTS Binge drinkers had significantly larger ventral striatal grey matter volumes compared to controls. There were no between group differences in hippocampal or amygdalar volume. Ventral striatal, amygdalar, and hippocampal volumes were also negatively related to AUDIT scores across groups. CONCLUSIONS Our findings stand in contrast to the lower ventral striatal volume previously observed in more severe forms of alcohol use disorders, suggesting that college-age binge drinkers may represent a distinct population from those groups. These findings may instead represent early sequelae, compensatory effects of repeated binge and withdrawal, or an endophenotypic risk factor

    Sebomic identification of sex- and ethnicity-specific variations in residual skin surface components (RSSC) for bio-monitoring or forensic applications

    Get PDF
    Background: “Residual skin surface components” (RSSC) is the collective term used for the superficial layer of sebum, residue of sweat, small quantities of intercellular lipids and components of natural moisturising factor present on the skin surface. Potential applications of RSSC include use as a sampling matrix for identifying biomarkers of disease, environmental exposure monitoring, and forensics (retrospective identification of exposure to toxic chemicals). However, it is essential to first define the composition of “normal” RSSC. Therefore, the aim of the current study was to characterise RSSC to determine commonalities and differences in RSSC composition in relation to sex and ethnicity. Methods: Samples of RSSC were acquired from volunteers using a previously validated method and analysed by high-pressure liquid chromatography–atmospheric pressure chemical ionisation–mass spectrometry (HPLC-APCI-MS). The resulting data underwent sebomic analysis. Results: The composition and abundance of RSSC components varied according to sex and ethnicity. The normalised abundance of free fatty acids, wax esters, diglycerides and triglycerides was significantly higher in males than females. Ethnicity-specific differences were observed in free fatty acids and a diglyceride. Conclusions: The HPLC-APCI-MS method developed in this study was successfully used to analyse the normal composition of RSSC. Compositional differences in the RSSC can be attributed to sex and ethnicity and may reflect underlying factors such as diet, hormonal levels and enzyme expression.Peer reviewedFinal Published versio

    Transcriptomic Analysis Reveals Novel Mechanistic Insight into Murine Biological Responses to Multi-Walled Carbon Nanotubes in Lungs and Cultured Lung Epithelial Cells

    Get PDF
    There is great interest in substituting animal work with in vitro experimentation in human health risk assessment; however, there are only few comparisons of in vitro and in vivo biological responses to engineered nanomaterials. We used high-content genomics tools to compare in vivo pulmonary responses of multiwalled carbon nanotubes (MWCNT) to those in vitro in cultured lung epithelial cells (FE1) at the global transcriptomic level. Primary size, surface area and other properties of MWCNT- XNRI -7 (Mitsui7) were characterized using DLS, SEM and TEM. Mice were exposed via a single intratracheal instillation to 18, 54, or 162 μg of Mitsui7/mouse. FE1 cells were incubated with 12.5, 25 and 100 μg/ml of Mitsui7. Tissue and cell samples were collected at 24 hours post-exposure. DNA microarrays were employed to establish mechanistic differences and similarities between the two models. Microarray results were confirmed using gene-specific RT-qPCR. Bronchoalveolar lavage (BAL) fluid was assessed for indications of inflammation in vivo. A strong dose-dependent activation of acute phase and inflammation response was observed in mouse lungs reflective mainly of an inflammatory response as observed in BAL. In vitro, a wide variety of core cellular functions were affected including transcription, cell cycle, and cellular growth and proliferation. Oxidative stress, fibrosis and inflammation processes were altered in both models. Although there were similarities observed between the two models at the pathway-level, the specific genes altered under these pathways were different, suggesting that the underlying mechanisms of responses are different in cells in culture and the lung tissue. Our results suggest that careful consideration should be given in selecting relevant endpoints when substituting animal with in vitro testing

    Differences in inflammation and acute phase response but similar genotoxicity in mice following pulmonary exposure to graphene oxide and reduced graphene oxide

    Get PDF
    We investigated toxicity of 2-3 layered >1 μm sized graphene oxide (GO) and reduced graphene oxide (rGO) in mice following single intratracheal exposure with respect to pulmonary inflammation, acute phase response (biomarker for risk of cardiovascular disease) and genotoxicity. In addition, we assessed exposure levels of particulate matter emitted during production of graphene in a clean room and in a normal industrial environment using chemical vapour deposition. Toxicity was evaluated at day 1, 3, 28 and 90 days (18, 54 and 162 μg/mouse), except for GO exposed mice at day 28 and 90 where only the lowest dose was evaluated. GO induced a strong acute inflammatory response together with a pulmonary (Serum-Amyloid A, Saa3) and hepatic (Saa1) acute phase response. rGO induced less acute, but a constant and prolonged inflammation up to day 90. Lung histopathology showed particle agglomerates at day 90 without signs of fibrosis. In addition, DNA damage in BAL cells was observed across time points and doses for both GO and rGO. In conclusion, pulmonary exposure to GO and rGO induced inflammation, acute phase response and genotoxicity but no fibrosis

    Hypoxia-Induced Down-Regulation of Neprilysin by Histone Modification in Mouse Primary Cortical and Hippocampal Neurons

    Get PDF
    Amyloid β-peptide (Aβ) accumulation leads to neurodegeneration and Alzheimer's disease (AD). Aβ metabolism is a dynamic process in the Aβ production and clearance that requires neprilysin (NEP) and other enzymes to degrade Aβ. It has been reported that NEP expression is significantly decreased in the brain of AD patients. Previously we have documented hypoxia is a risk factor for Aβ generation in vivo and in vitro through increasing Aβ generation by altering β-cleavage and γ-cleavage of APP and down-regulating NEP, and causing tau hyperphosphorylation. Here, we investigated the molecular mechanisms of hypoxia-induced down-regulation of NEP. We found a significant decrease in NEP expression at the mRNA and protein levels after hypoxic treatment in mouse primary cortical and hippocampal neurons. Chromatin immunoprecipitation (ChIP) assays and relative quantitative PCR (q-PCR) revealed an increase of histone H3-lysine9 demethylation (H3K9me2) and a decrease of H3 acetylation (H3-Ace) in the NEP promoter regions following hypoxia. In addition, we found that hypoxia caused up-regulation of histone methyl transferase (HMT) G9a and histone deacetylases (HDACs) HDAC-1. Decreased expression of NEP during hypoxia can be prevented by application with the epigenetic regulators 5-Aza-2′-deoxycytidine (5-Aza), HDACs inhibitor sodium valproate (VA), and siRNA-mediated knockdown of G9a or HDAC1. DNA methylation PCR data do not support that hypoxia affects the methylation of NEP promoters. This study suggests that hypoxia may down-regulate NEP by increasing H3K9me2 and decreasing H3-Ace modulation
    corecore