345 research outputs found
Maternal allergic contact dermatitis causes increased asthma risk in offspring
<p>Abstract</p> <p>Background</p> <p>Offspring of asthmatic mothers have increased risk of developing asthma, based on human epidemiologic data and experimental animal models. The objective of this study was to determine whether maternal allergy at non-pulmonary sites can increase asthma risk in offspring.</p> <p>Methods</p> <p>BALB/c female mice received 2 topical applications of vehicle, dinitrochlorobenzene, or toluene diisocyanate before mating with untreated males. Dinitrochlorobenzene is a skin-sensitizer only and known to induce a Th1 response, while toluene diisocyanate is both a skin and respiratory sensitizer that causes a Th2 response. Both cause allergic contact dermatitis. Offspring underwent an intentionally suboptimal protocol of allergen sensitization and aerosol challenge, followed by evaluation of airway hyperresponsiveness, allergic airway inflammation, and cytokine production. Mothers were tested for allergic airway disease, evidence of dermatitis, cellularity of the draining lymph nodes, and systemic cytokine levels. The role of interleukin-4 was also explored using interleukin-4 deficient mice.</p> <p>Results</p> <p>Offspring of toluene diisocyanate but not dinitrochlorobenzene-treated mothers developed an asthmatic phenotype following allergen sensitization and challenge, seen as increased Penh values, airway inflammation, bronchoalveolar lavage total cell counts and eosinophilia, and Th2 cytokine imbalance in the lung. Toluene diisocyanate treated interleukin-4 deficient mothers were able to transfer asthma risk to offspring. Mothers in both experimental groups developed allergic contact dermatitis, but not allergic airway disease.</p> <p>Conclusion</p> <p>Maternal non-respiratory allergy (Th2-skewed dermatitis caused by toluene diisocyanate) can result in the maternal transmission of asthma risk in mice.</p
A Dynamic Stochastic Model for DNA Replication Initiation in Early Embryos
Background: Eukaryotic cells seem unable to monitor replication completion during normal S phase, yet must ensure a reliable replication completion time. This is an acute problem in early Xenopus embryos since DNA replication origins are located and activated stochastically, leading to the random completion problem. DNA combing, kinetic modelling and other studies using Xenopus egg extracts have suggested that potential origins are much more abundant than actual initiation events and that the time-dependent rate of initiation, I(t), markedly increases through S phase to ensure the rapid completion of unreplicated gaps and a narrow distribution of completion times. However, the molecular mechanism that underlies this increase has remained obscure.Methodology/Principal Findings: Using both previous and novel DNA combing data we have confirmed that I(t) increases through S phase but have also established that it progressively decreases before the end of S phase. To explore plausible biochemical scenarios that might explain these features, we have performed comparisons between numerical simulations and DNA combing data. Several simple models were tested: i) recycling of a limiting replication fork component from completed replicons; ii) time-dependent increase in origin efficiency; iii) time-dependent increase in availability of an initially limiting factor, e. g. by nuclear import. None of these potential mechanisms could on its own account for the data. We propose a model that combines time-dependent changes in availability of a replication factor and a fork-density dependent affinity of this factor for potential origins. This novel model quantitatively and robustly accounted for the observed changes in initiation rate and fork density.Conclusions/Significance: This work provides a refined temporal profile of replication initiation rates and a robust, dynamic model that quantitatively explains replication origin usage during early embryonic S phase. These results have significant implications for the organisation of replication origins in higher eukaryotes
Primary Raynaud's phenomenon in an infant: a case report and review of literature
Raynaud's phenomenon (RP) is an extremely unusual finding in early infancy. In the present report we describe a one-month-old previously healthy male infant who presented with unilateral acrocyanosis. Although infantile acrocyanosis is known to be a benign and self-resolving condition, it is generally bilateral and symmetric. The unilateral nature of the acrocyanosis was an atypical finding in this infant. Consequently, he was closely monitored to evaluate the progression of his acrocyanosis. Based on his benign clinical course and failure to demonstrate other etiologies contributing to his acrocyanosis, he was diagnosed to have primary RP. Due to the rarity of RP in children, we review the progress in understanding the pathophysiology, epidemiology and management of RP and additionally discuss the differential diagnosis of unilateral and bilateral acrocyanosis in infants
Allergens induce enhanced bronchoconstriction and leukotriene production in C5 deficient mice
BACKGROUND: Previous genetic analysis has shown that a deletion in the complement component 5 gene-coding region renders mice more susceptible to allergen-induced airway hyperresponsiveness (AHR) due to reduced IL-12 production. We investigated the role of complement in a murine model of asthma-like pulmonary inflammation. METHODS: In order to evaluate the role of complement B10 mice either sufficient or deficient in C5 were studied. Both groups of mice immunized and challenged with a house dust extract (HDE) containing high levels of cockroach allergens. Airways hyper-reactivity was determined with whole-body plesthysmography. Bronchoalveolar lavage (BAL) was performed to determine pulmonary cellular recruitment and measure inflammatory mediators. Lung homogenates were assayed for mediators and plasma levels of IgE determined. Pulmonary histology was also evaluated. RESULTS: C5-deficient mice showed enhanced AHR to methylcholine challenge, 474% and 91% increase above baseline Penh in C5-deficient and C5-sufficient mice respectively, p < 0.001. IL-12 levels in the lung homogenate (LH) were only slightly reduced and BAL IL-12 was comparable in C5-sufficient and C5-deficient mice. However, C5-deficient mice had significantly higher cysteinyl-leukotriene levels in the BAL fluid, 1913 +/- 246 pg/ml in C5d and 756 +/- 232 pg/ml in C5-sufficient, p = 0.003. CONCLUSION: These data demonstrate that C5-deficient mice show enhanced AHR due to increased production of cysteinyl-leukotrienes
Evidence for Sequential and Increasing Activation of Replication Origins along Replication Timing Gradients in the Human Genome
Genome-wide replication timing studies have suggested that mammalian chromosomes consist of megabase-scale domains of coordinated origin firing separated by large originless transition regions. Here, we report a quantitative genome-wide analysis of DNA replication kinetics in several human cell types that contradicts this view. DNA combing in HeLa cells sorted into four temporal compartments of S phase shows that replication origins are spaced at 40 kb intervals and fire as small clusters whose synchrony increases during S phase and that replication fork velocity (mean 0.7 kb/min, maximum 2.0 kb/min) remains constant and narrowly distributed through S phase. However, multi-scale analysis of a genome-wide replication timing profile shows a broad distribution of replication timing gradients with practically no regions larger than 100 kb replicating at less than 2 kb/min. Therefore, HeLa cells lack large regions of unidirectional fork progression. Temporal transition regions are replicated by sequential activation of origins at a rate that increases during S phase and replication timing gradients are set by the delay and the spacing between successive origin firings rather than by the velocity of single forks. Activation of internal origins in a specific temporal transition region is directly demonstrated by DNA combing of the IGH locus in HeLa cells. Analysis of published origin maps in HeLa cells and published replication timing and DNA combing data in several other cell types corroborate these findings, with the interesting exception of embryonic stem cells where regions of unidirectional fork progression seem more abundant. These results can be explained if origins fire independently of each other but under the control of long-range chromatin structure, or if replication forks progressing from early origins stimulate initiation in nearby unreplicated DNA. These findings shed a new light on the replication timing program of mammalian genomes and provide a general model for their replication kinetics
Heritability in the Efficiency of Nonsense-Mediated mRNA Decay in Humans
BACKGROUND: In eukaryotes mRNA transcripts of protein-coding genes in which an intron has been retained in the coding region normally result in premature stop codons and are therefore degraded through the nonsense-mediated mRNA decay (NMD) pathway. There is evidence in the form of selective pressure for in-frame stop codons in introns and a depletion of length three introns that this is an important and conserved quality-control mechanism. Yet recent reports have revealed that the efficiency of NMD varies across tissues and between individuals, with important clinical consequences. PRINCIPAL FINDINGS: Using previously published Affymetrix exon microarray data from cell lines genotyped as part of the International HapMap project, we investigated whether there are heritable, inter-individual differences in the abundance of intron-containing transcripts, potentially reflecting differences in the efficiency of NMD. We identified intronic probesets using EST data and report evidence of heritability in the extent of intron expression in 56 HapMap trios. We also used a genome-wide association approach to identify genetic markers associated with intron expression. Among the top candidates was a SNP in the DCP1A gene, which forms part of the decapping complex, involved in NMD. CONCLUSIONS: While we caution that some of the apparent inter-individual difference in intron expression may be attributable to different handling or treatments of cell lines, we hypothesize that there is significant polymorphism in the process of NMD, resulting in heritable differences in the abundance of intronic mRNA. Part of this phenotype is likely to be due to a polymorphism in a decapping enzyme on human chromosome 3
A short history of the 5-HT2C receptor: from the choroid plexus to depression, obesity and addiction treatment
This paper is a personal account on the discovery and characterization of the 5-HT2C receptor (first known as the 5- HT1C receptor) over 30 years ago and how it translated into a number of unsuspected features for a G protein-coupled receptor (GPCR) and a diversity of clinical applications. The 5-HT2C receptor is one of the most intriguing members of the GPCR superfamily. Initially referred to as 5-HT1CR, the 5-HT2CR was discovered while studying the pharmacological features and the distribution of [3H]mesulergine-labelled sites, primarily in the brain using radioligand binding and slice autoradiography. Mesulergine (SDZ CU-085), was, at the time, best defined as a ligand with serotonergic and dopaminergic properties. Autoradiographic studies showed remarkably strong [3H]mesulergine-labelling to the rat choroid plexus. [3H]mesulergine-labelled sites had pharmacological properties different from, at the time, known or purported 5-HT receptors. In spite of similarities with 5-HT2 binding, the new binding site was called 5-HT1C because of its very high affinity for 5-HT itself. Within the following 10 years, the 5-HT1CR (later named 5- HT2C) was extensively characterised pharmacologically, anatomically and functionally: it was one of the first 5-HT receptors to be sequenced and cloned. The 5-HT2CR is a GPCR, with a very complex gene structure. It constitutes a rarity in theGPCR family: many 5-HT2CR variants exist, especially in humans, due to RNA editing, in addition to a few 5-HT2CR splice variants. Intense research led to therapeutically active 5-HT2C receptor ligands, both antagonists (or inverse agonists) and agonists: keeping in mind that a number of antidepressants and antipsychotics are 5- HT2CR antagonists/inverse agonists. Agomelatine, a 5-HT2CR antagonist is registered for the treatment of major depression. The agonist Lorcaserin is registered for the treatment of aspects of obesity and has further potential in addiction, especially nicotine/ smoking. There is good evidence that the 5-HT2CR is involved in spinal cord injury-induced spasms of the lower limbs, which can be treated with 5-HT2CR antagonists/inverse agonists such as cyproheptadine or SB206553. The 5-HT2CR may play a role in schizophrenia and epilepsy. Vabicaserin, a 5-HT2CR agonist has been in development for the treatment of schizophrenia and obesity, but was stopped. As is common, there is potential for further indications for 5-HT2CR ligands, as suggested by a number of preclinical and/or genome-wide association studies (GWAS) on depression, suicide, sexual dysfunction, addictions and obesity. The 5-HT2CR is clearly affected by a number of established antidepressants/antipsychotics and may be one of the culprits in antipsychotic-induced weight gain
DnaC Inactivation in Escherichia coli K-12 Induces the SOS Response and Expression of Nucleotide Biosynthesis Genes
Background: Initiation of chromosome replication in E. coli requires the DnaA and DnaC proteins and conditionally-lethal dnaA and dnaC mutants are often used to synchronize cell populations. Methodology/Principal Findings: DNA microarrays were used to measure mRNA steady-state levels in initiation-deficient dnaA46 and dnaC2 bacteria at permissive and non-permissive temperatures and their expression profiles were compared to MG1655 wildtype cells. For both mutants there was altered expression of genes involved in nucleotide biosynthesis at the non-permissive temperature. Transcription of the dnaA and dnaC genes was increased at the non-permissive temperature in the respective mutant strains indicating auto-regulation of both genes. Induction of the SOS regulon was observed in dnaC2 cells at 38uC and 42uC. Flow cytometric analysis revealed that dnaC2 mutant cells at non-permissive temperature had completed the early stages of chromosome replication initiation. Conclusion/Significance: We suggest that in dnaC2 cells the SOS response is triggered by persistent open-complex formation at oriC and/or by arrested forks that require DnaC for replication restart
Membrane Docking Geometry of GRP1 PH Domain Bound to a Target Lipid Bilayer: An EPR Site-Directed Spin-Labeling and Relaxation Study
The second messenger lipid PIP3 (phosphatidylinositol-3,4,5-trisphosphate) is generated by the lipid kinase PI3K (phosphoinositide-3-kinase) in the inner leaflet of the plasma membrane, where it regulates a broad array of cell processes by recruiting multiple signaling proteins containing PIP3-specific pleckstrin homology (PH) domains to the membrane surface. Despite the broad importance of PIP3-specific PH domains, the membrane docking geometry of a PH domain bound to its target PIP3 lipid on a bilayer surface has not yet been experimentally determined. The present study employs EPR site-directed spin labeling and relaxation methods to elucidate the membrane docking geometry of GRP1 PH domain bound to bilayer-embedded PIP3. The model target bilayer contains the neutral background lipid PC and both essential targeting lipids: (i) PIP3 target lipid that provides specificity and affinity, and (ii) PS facilitator lipid that enhances the PIP3 on-rate via an electrostatic search mechanism. The EPR approach measures membrane depth parameters for 18 function-retaining spin labels coupled to the PH domain, and for calibration spin labels coupled to phospholipids. The resulting depth parameters, together with the known high resolution structure of the co-complex between GRP1 PH domain and the PIP3 headgroup, provide sufficient constraints to define an optimized, self-consistent membrane docking geometry. In this optimized geometry the PH domain engulfs the PIP3 headgroup with minimal bilayer penetration, yielding the shallowest membrane position yet described for a lipid binding domain. This binding interaction displaces the PIP3 headgroup from its lowest energy position and orientation in the bilayer, but the headgroup remains within its energetically accessible depth and angular ranges. Finally, the optimized docking geometry explains previous biophysical findings including mutations observed to disrupt membrane binding, and the rapid lateral diffusion observed for PIP3-bound GRP1 PH domain on supported lipid bilayers
- …