147 research outputs found
Completeness and decidability results for hybrid(ised) logics
Adding to the modal description of transition structures the ability to refer to specific states, hybrid(ised) logics provide an interesting framework for the specification of reconfigurable systems. The qualifier ‘hybrid(ised)’ refers to a generic method of developing, on top of whatever specification logic is used to model software configurations, the elements of an hybrid language, including nominals and modalities. In such a context, this paper shows how a calculus for a hybrid(ised) logic can be generated from a calculus of the base logic and that, moreover, it preserves soundness and completeness. A second contribution establishes that hybridising a decidable logic also gives rise to a decidable hybrid(ised) one. These results pave the way to the development of dedicated proof tools for such logics used in the design of reconfigurable systems
Asymmetric Combination of Logics is Functorial: A Survey
Asymmetric combination of logics is a formal process that develops the characteristic features of a specific logic on top of another one. Typical examples include the development of temporal, hybrid, and probabilistic dimensions over a given base logic. These examples are surveyed in the paper under a particular perspective—that this sort of combination of logics possesses a functorial nature. Such a view gives rise to several interesting questions. They range from the problem of combining translations (between logics), to that of ensuring property preservation along the process, and the way different asymmetric combinations can be related through appropriate natural transformations
On the Multi-Language Construction
Modern software is no more developed in a single programming language. Instead, programmers tend to exploit cross-language interoperability mechanisms to combine code stemming from different languages, and thus yielding fully-fledged multi-language programs. Whilst this approach enables developers to benefit from the strengths of each single-language, on the other hand it complicates the semantics of such programs. Indeed, the resulting multi-language does not meet any of the semantics of the combined languages. In this paper, we broaden the boundary functions-based approach a la Matthews and Findler to propose an algebraic framework that provides a constructive mathematical notion of multi-language able to determine its semantics. The aim of this work is to overcome the lack of a formal method (resp., model) to design (resp., represent) a multi-language, regardless of the inherent nature of the underlying languages. We show that our construction ensures the uniqueness of the semantic function (i.e., the multi-language semantics induced by the combined languages) by proving the initiality of the term model (i.e., the abstract syntax of the multi-language) in its category
Automating Change of Representation for Proofs in Discrete Mathematics (Extended Version)
Representation determines how we can reason about a specific problem.
Sometimes one representation helps us find a proof more easily than others.
Most current automated reasoning tools focus on reasoning within one
representation. There is, therefore, a need for the development of better tools
to mechanise and automate formal and logically sound changes of representation.
In this paper we look at examples of representational transformations in
discrete mathematics, and show how we have used Isabelle's Transfer tool to
automate the use of these transformations in proofs. We give a brief overview
of a general theory of transformations that we consider appropriate for
thinking about the matter, and we explain how it relates to the Transfer
package. We show our progress towards developing a general tactic that
incorporates the automatic search for representation within the proving
process
Variant-Based Decidable Satisfiability in Initial Algebras with Predicates
[EN] Decision procedures can be either theory-specific, e.g., Presburger arithmetic, or theory-generic, applying to an infinite number of user-definable theories. Variant satisfiability is a theory-generic procedure for quantifier-free satisfiability in the initial algebra of an order-sorted equational theory (¿,E¿B) under two conditions: (i) E¿B has the finite variant property and B has a finitary unification algorithm; and (ii) (¿,E¿B) protects a constructor subtheory (¿,E¿¿B¿) that is OS-compact. These conditions apply to many user-definable theories, but have a main limitation: they apply well to data structures, but often do not hold for user-definable predicates on such data structures. We present a theory-generic satisfiability decision procedure, and a prototype implementation, extending variant-based satisfiability to initial algebras with user-definable predicates under fairly general conditions.Partially supported by NSF Grant CNS 14-09416, NRL under contract number N00173-17-1-G002, the EU (FEDER), Spanish MINECO project TIN2015-69175- C4-1-R and GV project PROMETEOII/2015/013. Ra´ul Guti´errez was also supported by INCIBE program “Ayudas para la excelencia de los equipos de investigaci´on avanzada en ciberseguridad”.Gutiérrez Gil, R.; Meseguer, J. (2018). Variant-Based Decidable Satisfiability in Initial Algebras with Predicates. Lecture Notes in Computer Science. 10855:306-322. https://doi.org/10.1007/978-3-319-94460-9_18S30632210855Armando, A., Bonacina, M.P., Ranise, S., Schulz, S.: New results on rewrite-based satisfiability procedures. TOCL 10(1), 4 (2009)Armando, A., Ranise, S., Rusinowitch, M.: A rewriting approach to satisfiability procedures. I&C 183(2), 140–164 (2003)Barrett, C., Shikanian, I., Tinelli, C.: An abstract decision procedure for satisfiability in the theory of inductive data types. JSAT 3, 21–46 (2007)Bouchard, C., Gero, K.A., Lynch, C., Narendran, P.: On forward closure and the finite variant property. In: Fontaine, P., Ringeissen, C., Schmidt, R.A. (eds.) FroCoS 2013. LNCS (LNAI), vol. 8152, pp. 327–342. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40885-4_23Bradley, A.R., Manna, Z.: The Calculus of Computation - Decision Procedures with Applications to Verification. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-74113-8Cholewa, A., Meseguer, J., Escobar, S.: Variants of variants and the finite variant property. Technical report, CS Dept. University of Illinois at Urbana-Champaign (2014). http://hdl.handle.net/2142/47117Ciobaca., S.: Verification of composition of security protocols with applications to electronic voting. Ph.D. thesis, ENS Cachan (2011)Comon, H.: Complete axiomatizations of some quotient term algebras. TCS 118(2), 167–191 (1993)Comon-Lundh, H., Delaune, S.: The finite variant property: how to get rid of some algebraic properties. In: Giesl, J. (ed.) RTA 2005. LNCS, vol. 3467, pp. 294–307. Springer, Heidelberg (2005). https://doi.org/10.1007/978-3-540-32033-3_22Dershowitz, N., Jouannaud, J.P.: Rewrite systems. In: Handbook of Theoretical Computer Science, North-Holland, vol. B, pp. 243–320 (1990)Dovier, A., Piazza, C., Rossi, G.: A uniform approach to constraint-solving for lists, multisets, compact lists, and sets. TOCL 9(3), 15 (2008)Dross, C., Conchon, S., Kanig, J., Paskevich, A.: Adding decision procedures to SMT solvers using axioms with triggers. JAR 56(4), 387–457 (2016)Escobar, S., Sasse, R., Meseguer, J.: Folding variant narrowing and optimal variant termination. JALP 81, 898–928 (2012)Goguen, J.A., Meseguer, J.: Models and equality for logical programming. In: Ehrig, H., Kowalski, R., Levi, G., Montanari, U. (eds.) TAPSOFT 1987. LNCS, vol. 250, pp. 1–22. Springer, Heidelberg (1987). https://doi.org/10.1007/BFb0014969Goguen, J., Meseguer, J.: Order-sorted algebra I: equational deduction for multiple inheritance, overloading, exceptions and partial operations. TCS 105, 217–273 (1992)Gutiérrez, R., Meseguer, J.: Variant satisfiability in initial algebras with predicates. Technical report, CS Department, University of Illinois at Urbana-Champaign (2018). http://hdl.handle.net/2142/99039Jouannaud, J.P., Kirchner, H.: Completion of a set of rules modulo a set of equations. SICOMP 15, 1155–1194 (1986)Kroening, D., Strichman, O.: Decision Procedures - An algorithmic point of view. Texts in TCS. An EATCS Series. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-74105-3Lynch, C., Morawska, B.: Automatic decidability. In: Proceedings of LICS 2002, p. 7. IEEE Computer Society (2002)Lynch, C., Tran, D.-K.: Automatic decidability and combinability revisited. In: Pfenning, F. (ed.) CADE 2007. LNCS (LNAI), vol. 4603, pp. 328–344. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-73595-3_22Meseguer, J.: Variant-based satisfiability in initial algebras. SCP 154, 3–41 (2018)Meseguer, J.: Strict coherence of conditional rewriting modulo axioms. TCS 672, 1–35 (2017)Meseguer, J., Goguen, J.: Initiality, induction and computability. In: Algebraic Methods in Semantics, Cambridge, pp. 459–541 (1985)Meseguer, J., Goguen, J.: Order-sorted algebra solves the constructor-selector, multiple representation and coercion problems. I&C 103(1), 114–158 (1993)Nelson, G., Oppen, D.C.: Simplification by cooperating decision procedures. TOPLAS 1(2), 245–257 (1979)Shostak, R.E.: Deciding combinations of theories. J. ACM 31(1), 1–12 (1984)Skeirik, S., Meseguer, J.: Metalevel algorithms for variant satisfiability. In: Lucanu, D. (ed.) WRLA 2016. LNCS, vol. 9942, pp. 167–184. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-44802-2_10Stump, A., Barrett, C.W., Dill, D.L., Levitt, J.R.: A decision procedure for an extensional theory of arrays. In: Proceedings of LICS 2001, pp. 29–37. IEEE (2001)Tushkanova, E., Giorgetti, A., Ringeissen, C., Kouchnarenko, O.: A rule-based system for automatic decidability and combinability. SCP 99, 3–23 (2015
Automatically Proving and Disproving Feasibility Conditions
[EN] In the realm of term rewriting, given terms s and t, a reachability condition s>>t is called feasible if there is a substitution O such that O(s) rewrites into O(t) in zero or more steps; otherwise, it is called infeasible. Checking infeasibility of (sequences of) reachability conditions is important in the analysis of computational properties of rewrite systems like confluence or (operational) termination. In this paper, we generalize this notion of feasibility to arbitrary n-ary relations on terms defined by first-order theories. In this way, properties of computational systems whose operational semantics can be given as a first-order theory can be investigated. We introduce a framework for proving feasibility/infeasibility, and a new tool, infChecker, which implements it.Supported by EU (FEDER), and projects RTI2018-094403-B-C32, PROMETEO/2019/098, and SP20180225. Also by INCIBE program "Ayudas para la excelencia de los equipos de investigación avanzada en ciberseguridad" (Raul Gutiérrez).Gutiérrez Gil, R.; Lucas Alba, S. (2020). Automatically Proving and Disproving Feasibility Conditions. Springer Nature. 416-435. https://doi.org/10.1007/978-3-030-51054-1_27S416435Andrianarivelo, N., Réty, P.: Over-approximating terms reachable by context-sensitive rewriting. In: Bojańczyk, M., Lasota, S., Potapov, I. (eds.) RP 2015. LNCS, vol. 9328, pp. 128–139. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24537-9_12Dershowitz, N.: Termination of rewriting. J. Symb. Comput. 3(1/2), 69–116 (1987). https://doi.org/10.1016/S0747-7171(87)80022-6Giesl, J., Thiemann, R., Schneider-Kamp, P., Falke, S.: Mechanizing and improving dependency pairs. J. Autom. Reasoning 37(3), 155–203 (2006). https://doi.org/10.1007/s10817-006-9057-7Goguen, J.A., Meseguer, J.: Models and equality for logical programming. In: Ehrig, H., Kowalski, R., Levi, G., Montanari, U. (eds.) TAPSOFT 1987. LNCS, vol. 250, pp. 1–22. Springer, Heidelberg (1987). https://doi.org/10.1007/BFb0014969Gutiérrez, R., Lucas, S.: Automatic generation of logical models with AGES. In: Fontaine, P. (ed.) CADE 2019. LNCS (LNAI), vol. 11716, pp. 287–299. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-29436-6_17Kojima, Y., Sakai, M.: Innermost reachability and context sensitive reachability properties are decidable for linear right-shallow term rewriting systems. In: Voronkov, A. (ed.) RTA 2008. LNCS, vol. 5117, pp. 187–201. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-70590-1_13Kojima, Y., Sakai, M., Nishida, N., Kusakari, K., Sakabe, T.: Context-sensitive innermost reachability is decidable for linear right-shallow term rewriting systems. Inf. Media Technol. 4(4), 802–814 (2009)Kojima, Y., Sakai, M., Nishida, N., Kusakari, K., Sakabe, T.: Decidability of reachability for right-shallow context-sensitive term rewriting systems. IPSJ Online Trans. 4, 192–216 (2011)Lucas, S.: Analysis of rewriting-based systems as first-order theories. In: Fioravanti, F., Gallagher, J.P. (eds.) LOPSTR 2017. LNCS, vol. 10855, pp. 180–197. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-94460-9_11Lucas, S.: Context-sensitive computations in functional and functional logic programs. J. Funct. Logic Program. 1998(1) (1998). http://danae.uni-muenster.de/lehre/kuchen/JFLP/articles/1998/A98-01/A98-01.htmlLucas, S.: Proving semantic properties as first-order satisfiability. Artif. Intell. 277 (2019). https://doi.org/10.1016/j.artint.2019.103174Lucas, S.: Using well-founded relations for proving operational termination. J. Autom. Reasoning 64(2), 167–195 (2019). https://doi.org/10.1007/s10817-019-09514-2Lucas, S., Gutiérrez, R.: Use of logical models for proving infeasibility in term rewriting. Inf. Process. Lett. 136, 90–95 (2018). https://doi.org/10.1016/j.ipl.2018.04.002Lucas, S., Marché, C., Meseguer, J.: Operational termination of conditional term rewriting systems. Inf. Process. Lett. 95(4), 446–453 (2005). https://doi.org/10.1016/j.ipl.2005.05.002Lucas, S., Meseguer, J.: Proving operational termination of declarative programs in general logics. In: Chitil, O., King, A., Danvy, O. (eds.) Proceedings of the 16th International Symposium on Principles and Practice of Declarative Programming, Kent, Canterbury, United Kingdom, 8–10 September 2014, pp. 111–122. ACM (2014). https://doi.org/10.1145/2643135.2643152Lucas, S., Meseguer, J., Gutiérrez, R.: The 2D dependency pair framework for conditional rewrite systems. Part I: definition and basic processors. J. Comput. Syst. Sci. 96, 74–106 (2018). https://doi.org/10.1016/j.jcss.2018.04.002Lucas, S., Meseguer, J., Gutiérrez, R.: The 2D dependency pair framework for conditional rewrite systems—Part II: advanced processors and implementation techniques. J. Autom. Reasoning (2020, in press)McCune, W.: Prover9 and Mace4. https://www.cs.unm.edu/~mccune/mace4/Meßner, F., Sternagel, C.: nonreach – a tool for nonreachability analysis. In: Vojnar, T., Zhang, L. (eds.) TACAS 2019. LNCS, vol. 11427, pp. 337–343. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-17462-0_19Middeldorp, A., Nagele, J., Shintani, K.: Confluence competition 2019. In: Beyer, D., Huisman, M., Kordon, F., Steffen, B. (eds.) TACAS 2019. LNCS, vol. 11429, pp. 25–40. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-17502-3_2Nishida, N., Maeda, Y.: Narrowing trees for syntactically deterministic conditional term rewriting systems. In: Kirchner, H. (ed.) Proceedings of the 3rd International Conference on Formal Structures for Computation and Deduction. FSCD 2018. Leibniz International Proceedings in Informatics (LIPIcs), vol. 108, pp. 26:1–26:20. Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik (2018). https://doi.org/10.4230/LIPIcs.FSCD.2018.26Ohlebusch, E.: Advanced Topics in Term Rewriting. Springer, Heidelberg (2002). http://www.springer.com/computer/swe/book/978-0-387-95250-5Prawitz, D.: Natural Deduction: A Proof-Theoretical Study. Dover, New York (2006)Sternagel, C., Sternagel, T., Middeldorp, A.: CoCo 2018 Participant: ConCon 1.5. In: Felgenhauer, B., Simonsen, J. (eds.) Proceedings of the 7th International Workshop on Confluence. IWC 2018, p. 66 (2018). http://cl-informatik.uibk.ac.at/events/iwc-2018/Sternagel, C., Yamada, A.: Reachability analysis for termination and confluence of rewriting. In: Vojnar, T., Zhang, L. (eds.) TACAS 2019. LNCS, vol. 11427, pp. 262–278. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-17462-0_15Winkler, S., Moser, G.: MædMax: a maximal ordered completion tool. In: Galmiche, D., Schulz, S., Sebastiani, R. (eds.) IJCAR 2018. LNCS (LNAI), vol. 10900, pp. 472–480. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-94205-6_3
Additive generators based on generalized arithmetic operators in interval-valued fuzzy and Atanassov's intuitionistic fuzzy set theory
In this paper we investigate additive generators in Atanassov's intuitionistic fuzzy and interval-valued fuzzy set theory. Starting from generalized arithmetic operators satisfying some axioms we define additive generators and we characterize continuous generators which map exact elements to exact elements in terms of generators on the unit interval. We give necessary and sufficient condition under which a generator actually generates a t-nporm and we show that the generated t-norm belongs to particular classes of t-norms depending on the arithmetic operators involved in the defintion of the generator
Many-Valued Institutions for Constraint Specification
We advance a general technique for enriching logical systems with soft constraints, making them suitable for specifying complex software systems where parts are put together not just based on how they meet certain functional requirements but also on how they optimise certain constraints. This added expressive power is required, for example, for capturing quality attributes that need to be optimised or, more generally, for formalising what are usually called service-level agreements. More specifically, we show how institutions endowed with a graded semantic consequence can accommodate soft-constraint satisfaction problems. We illustrate our approach by showing how, in the context of service discovery, one can quantify the compatibility of two specifications and thus formalise the selection of the most
promising provider of a required resource.Peer Reviewe
- …