2,022 research outputs found

    Leibniz, Acosmism, and Incompossibility

    Get PDF
    Leibniz claims that God acts in the best possible way, and that this includes creating exactly one world. But worlds are aggregates, and aggregates have a low degree of reality or metaphysical perfection, perhaps none at all. This is Leibniz’s tendency toward acosmism, or the view that there this no such thing as creation-as-a-whole. Many interpreters reconcile Leibniz’s acosmist tendency with the high value of worlds by proposing that God sums the value of each substance created, so that the best world is just the world with the most substances. I call this way of determining the value of a world the Additive Theory of Value (ATV), and argue that it leads to the current and insoluble form of the problem of incompossibility. To avoid the problem, I read “possible worlds” in “God chooses the best of all possible worlds” as referring to God’s ideas of worlds. These ideas, though built up from essences, are themselves unities and so well suited to be the value bearers that Leibniz’s theodicy requires. They have their own value, thanks to their unity, and that unity is not preserved when more essences are added

    Superconductivity in Cu_xTiSe_2

    Full text link
    Charge density waves (CDWs) are periodic modulations of the conduction electron density in solids. They are collective states that arise from intrinsic instabilities often present in low dimensional electronic systems. The layered dichalcogenides are the most well-studied examples, with TiSe_2 one of the first CDW-bearing materials known. The competition between CDW and superconducting collective electronic states at low temperatures has long been held and explored, and yet no chemical system has been previously reported where finely controlled chemical tuning allows this competition to be studied in detail. Here we report how, upon controlled intercalation of TiSe_2 with Cu to yield Cu_xTiSe_2, the CDW transition is continuously suppressed, and a new superconducting state emerges near x = 0.04, with a maximum T_c of 4.15 K found at x = 0.08. Cu_xTiSe_2 thus provides the first opportunity to study the CDW to Superconductivity transition in detail through an easily-controllable chemical parameter, and will provide new insights into the behavior of correlated electron systems.Comment: Accepted to Nature Physic

    Bayesian inference for an illness-death model for stroke with cognition as a latent time-dependent risk factor.

    Get PDF
    Longitudinal data can be used to estimate the transition intensities between healthy and unhealthy states prior to death. An illness-death model for history of stroke is presented, where time-dependent transition intensities are regressed on a latent variable representing cognitive function. The change of this function over time is described by a linear growth model with random effects. Occasion-specific cognitive function is measured by an item response model for longitudinal scores on the Mini-Mental State Examination, a questionnaire used to screen for cognitive impairment. The illness-death model will be used to identify and to explore the relationship between occasion-specific cognitive function and stroke. Combining a multi-state model with the latent growth model defines a joint model which extends current statistical inference regarding disease progression and cognitive function. Markov chain Monte Carlo methods are used for Bayesian inference. Data stem from the Medical Research Council Cognitive Function and Ageing Study in the UK (1991-2005)

    Canonical Causal Diagrams to Guide the Treatment of Missing Data in Epidemiological Studies

    Get PDF
    With incomplete data, the missing at random (MAR) assumption is widely understood to enable unbiased estimation with appropriate methods. The need to assess the plausibility of MAR and to perform sensitivity analyses considering missing not at random (MNAR) scenarios have been emphasized, but the practical difficulty of these tasks is rarely acknowledged. What MAR means with multivariable missingness is difficult to grasp, while in many MNAR scenarios unbiased estimation is possible using methods commonly associated with MAR. Directed acyclic graphs (DAGs) have been proposed as an alternative framework for specifying practically accessible assumptions beyond the MAR-MNAR dichotomy. However, there is currently no general algorithm for deciding how to handle the missing data given a specific DAG. We construct "canonical" DAGs capturing typical missingness mechanisms in epidemiological studies with incomplete exposure, outcome and confounders. For each DAG, we determine whether common target parameters are "recoverable", meaning that they can be expressed as functions of the observed data distribution and thus estimated consistently, or if sensitivity analyses are necessary. We investigate the performance of available case and multiple imputation procedures. Using the Longitudinal Study of Australian Children, we illustrate how our findings can guide the treatment of missing data in point-exposure studies

    Friends and Foes from an Ant Brain's Point of View – Neuronal Correlates of Colony Odors in a Social Insect

    Get PDF
    Background: Successful cooperation depends on reliable identification of friends and foes. Social insects discriminate colony members (nestmates/friends) from foreign workers (non-nestmates/foes) by colony-specific, multi-component colony odors. Traditionally, complex processing in the brain has been regarded as crucial for colony recognition. Odor information is represented as spatial patterns of activity and processed in the primary olfactory neuropile, the antennal lobe (AL) of insects, which is analogous to the vertebrate olfactory bulb. Correlative evidence indicates that the spatial activity patterns reflect odor-quality, i.e., how an odor is perceived. For colony odors, alternatively, a sensory filter in the peripheral nervous system was suggested, causing specific anosmia to nestmate colony odors. Here, we investigate neuronal correlates of colony odors in the brain of a social insect to directly test whether they are anosmic to nestmate colony odors and whether spatial activity patterns in the AL can predict how odor qualities like ‘‘friend’’ and ‘‘foe’’ are attributed to colony odors. Methodology/Principal Findings: Using ant dummies that mimic natural conditions, we presented colony odors and investigated their neuronal representation in the ant Camponotus floridanus. Nestmate and non-nestmate colony odors elicited neuronal activity: In the periphery, we recorded sensory responses of olfactory receptor neurons (electroantennography), and in the brain, we measured colony odor specific spatial activity patterns in the AL (calcium imaging). Surprisingly, upon repeated stimulation with the same colony odor, spatial activity patterns were variable, and as variable as activity patterns elicited by different colony odors. Conclusions: Ants are not anosmic to nestmate colony odors. However, spatial activity patterns in the AL alone do not provide sufficient information for colony odor discrimination and this finding challenges the current notion of how odor quality is coded. Our result illustrates the enormous challenge for the nervous system to classify multi-component odors and indicates that other neuronal parameters, e.g., precise timing of neuronal activity, are likely necessary for attribution of odor quality to multi-component odors

    iQuantitator: A tool for protein expression inference using iTRAQ

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Isobaric Tags for Relative and Absolute Quantitation (iTRAQℱ) [Applied Biosystems] have seen increased application in differential protein expression analysis. To facilitate the growing need to analyze iTRAQ data, especially for cases involving multiple iTRAQ experiments, we have developed a modeling approach, statistical methods, and tools for estimating the relative changes in protein expression under various treatments and experimental conditions.</p> <p>Results</p> <p>This modeling approach provides a unified analysis of data from multiple iTRAQ experiments and links the observed quantity (reporter ion peak area) to the experiment design and the calculated quantity of interest (treatment-dependent protein and peptide fold change) through an additive model under log transformation. Others have demonstrated, through a case study, this modeling approach and noted the computational challenges of parameter inference in the unbalanced data set typical of multiple iTRAQ experiments. Here we present the development of an inference approach, based on hierarchical regression with batching of regression coefficients and Markov Chain Monte Carlo (MCMC) methods that overcomes some of these challenges. In addition to our discussion of the underlying method, we also present our implementation of the software, simulation results, experimental results, and sample output from the resulting analysis report.</p> <p>Conclusion</p> <p>iQuantitator's process-based modeling approach overcomes limitations in current methods and allows for application in a variety of experimental designs. Additionally, hypertext-linked documents produced by the tool aid in the interpretation and exploration of results.</p

    Environmental and genetic determinants of two Vitamin D metabolites in healthy Australian children

    Get PDF
    Background: Vitamin D deficiency has been associated with adverse health outcomes. We examined genetic and environmental determinants of serum 25(OH)D3 and 1,25(OH)2D3 in childhood.Methods: The study sample consisted of 322 healthy Australian children (predominantly Caucasians) who provided a venous blood sample. A parental interview was conducted and skin phototype and anthropometry measures were assessed. Concentrations of 25(OH)D3 and 1,25(OH)2D3 were measured by selective solid-phase extraction-capillary liquid chromatography-tandem mass spectrometry. These concentrations were deseasonalised where relevant to remove the effect of month of sampling.Results: Deseasonalised log 25(OH)D3 and 1,25(OH)2D3 concentrations were only moderately correlated (r=0.42, pConclusions: Environmental factors and genetic factors contributed to both vitamin D metabolite concentrations. The intriguing finding that the higher ambient UVR contributed to higher 1,25(OH)2D3 after accounting for 25(OH)D3 concentrations requires further evaluation

    Understanding Variation in Sets of N-of-1 Trials.

    Get PDF
    A recent paper in this journal by Chen and Chen has used computer simulations to examine a number of approaches to analysing sets of n-of-1 trials. We have examined such designs using a more theoretical approach based on considering the purpose of analysis and the structure as regards randomisation that the design uses. We show that different purposes require different analyses and that these in turn may produce quite different results. Our approach to incorporating the randomisation employed when the purpose is to test a null hypothesis of strict equality of the treatment makes use of Nelder's theory of general balance. However, where the purpose is to make inferences about the effects for individual patients, we show that a mixed model is needed. There are strong parallels to the difference between fixed and random effects meta-analyses and these are discussed
    • 

    corecore