970 research outputs found

    Stable isotope analysis provides new information on winter habitat use of declining avian migrants that is relevant to their conservation

    Get PDF
    Winter habitat use and the magnitude of migratory connectivity are important parameters when assessing drivers of the marked declines in avian migrants. Such information is unavailable for most species. We use a stable isotope approach to assess these factors for three declining African-Eurasian migrants whose winter ecology is poorly known: wood warbler Phylloscopus sibilatrix, house martin Delichon urbicum and common swift Apus apus. Spatially segregated breeding wood warbler populations (sampled across a 800 km transect), house martins and common swifts (sampled across a 3,500 km transect) exhibited statistically identical intra-specific carbon and nitrogen isotope ratios in winter grown feathers. Such patterns are compatible with a high degree of migratory connectivity, but could arise if species use isotopically similar resources at different locations. Wood warbler carbon isotope ratios are more depleted than typical for African-Eurasian migrants and are compatible with use of moist lowland forest. The very limited variance in these ratios indicates specialisation on isotopically restricted resources, which may drive the similarity in wood warbler populations' stable isotope ratios and increase susceptibility to environmental change within its wintering grounds. House martins were previously considered to primarily use moist montane forest during the winter, but this seems unlikely given the enriched nature of their carbon isotope ratios. House martins use a narrower isotopic range of resources than the common swift, indicative of increased specialisation or a relatively limited wintering range; both factors could increase house martins' vulnerability to environmental change. The marked variance in isotope ratios within each common swift population contributes to the lack of population specific signatures and indicates that the species is less vulnerable to environmental change in sub-Saharan Africa than our other focal species. Our findings demonstrate how stable isotope research can contribute to understanding avian migrants' winter ecology and conservation status

    Extent, intensity and drivers of mammal defaunation:a continental-scale analysis across the Neotropics

    Get PDF
    Neotropical mammal diversity is currently threatened by several chronic human-induced pressures. We compiled 1,029 contemporary mammal assemblages surveyed across the Neotropics to quantify the continental-scale extent and intensity of defaunation and understand their determinants based on environmental covariates. We calculated a local defaunation index for all assemblages—adjusted by a false-absence ratio—which was examined using structural equation models. We propose a hunting index based on socioenvironmental co-variables that either intensify or inhibit hunting, which we used as an additional predictor of defaunation. Mammal defaunation intensity across the Neotropics on average erased 56.5% of the local source fauna, with ungulates comprising the most ubiquitous losses. The extent of defaunation is widespread, but more incipient in hitherto relatively intact major biomes that are rapidly succumbing to encroaching deforestation frontiers. Assemblage-wide mammal body mass distribution was greatly reduced from a historical 95th-percentile of ~ 14 kg to only ~ 4 kg in modern assemblages. Defaunation and depletion of large-bodied species were primarily driven by hunting pressure and remaining habitat area. Our findings can inform guidelines to design transnational conservation policies to safeguard native vertebrates, and ensure that the “empty ecosystem” syndrome will be deterred from reaching much of the New World tropics

    Testing the Goodness of Supplementary Feeding to Enhance Population Viability in an Endangered Vulture

    Get PDF
    [Background]: Human-predator conflicts are directly or indirectly threatening many species with extinction. Thus, biologists are urged to find simple solutions to complex situations while avoiding unforeseen conservation outcomes. The provision of supplementary food at artificial feeding sites (AFS) is frequently used in the conservation of scavenger bird populations currently suffering from indirect poisoning, although no scientific studies on its effectiveness have been conducted.[Methodology/Principal Findings]: We used a long-term data set of 95 individually marked birds from the largest European core of the endangered bearded vulture (Gypaetus barbatus) to test the long-term effects of specific AFS for bearded vultures on their survival rates (by CMR models) and population dynamics (by Monte Carlo simulations) in an area where fatalities derived from illegal poisoning and the use of other toxics like veterinary drugs have increased over the last several years. Our data support the positive relationship between the use of AFS and survival. However, contrary to theoretical predictions (e.g. high and more stable adult survival among long-lived species), the use of AFS increased only survival of pre-adults. Moreover, AFS buffered the effects of illegal poisoning on this age-class, while adult survival decreased over years. Our simulations predicted a maximum value of extinction probability over a time horizon of 50 years. Population projections run with survival rates expected in scenarios without poisoning predicted the situation of least conservation concern, while including only AFS can maintain a large floater surplus that may delay population decline but fails to reduce poisoning risk among adults.[Conclusions/Significance]: Although AFS are not effective to save bearded vultures from an expected population decline, they delay population extinction and can be a useful tool for prolonging population viability while combating illegal and indirect poisoning. The eradication of different sources of poisoning is of top priority to ensure the long-term viability of this and many other species.Financial support for AM was obtained from the Departament of Medi Ambient i Habitatge of Generalitat de Catalunya and Ministry of Environment. MC was supported by an Excellence post-doctoral contract (Junta de Andalucía).Peer reviewe

    Measuring the Meltdown: Drivers of Global Amphibian Extinction and Decline

    Get PDF
    Habitat loss, climate change, over-exploitation, disease and other factors have been hypothesised in the global decline of amphibian biodiversity. However, the relative importance of and synergies among different drivers are still poorly understood. We present the largest global analysis of roughly 45% of known amphibians (2,583 species) to quantify the influences of life history, climate, human density and habitat loss on declines and extinction risk. Multi-model Bayesian inference reveals that large amphibian species with small geographic range and pronounced seasonality in temperature and precipitation are most likely to be Red-Listed by IUCN. Elevated habitat loss and human densities are also correlated with high threat risk. Range size, habitat loss and more extreme seasonality in precipitation contributed to decline risk in the 2,454 species that declined between 1980 and 2004, compared to species that were stable (n = 1,545) or had increased (n = 28). These empirical results show that amphibian species with restricted ranges should be urgently targeted for conservation

    Sensitivity of Metrics of Phylogenetic Structure to Scale, Source of Data and Species Pool of Hummingbird Assemblages along Elevational Gradients

    Get PDF
    Patterns of phylogenetic structure of assemblages are increasingly used to gain insight into the ecological and evolutionary processes involved in the assembly of co-occurring species. Metrics of phylogenetic structure can be sensitive to scaling issues and data availability. Here we empirically assess the sensitivity of four metrics of phylogenetic structure of assemblages to changes in (i) the source of data, (ii) the spatial grain at which assemblages are defined, and (iii) the definition of species pools using hummingbird (Trochilidae) assemblages along an elevational gradient in Colombia. We also discuss some of the implications in terms of the potential mechanisms driving these patterns. To explore how source of data influence phylogenetic structure we defined assemblages using three sources of data: field inventories, museum specimens, and range maps. Assemblages were defined at two spatial grains: coarse-grained (elevational bands of 800-m width) and fine-grained (1-km2 plots). We used three different species pools: all species contained in assemblages, all species within half-degree quadrats, and all species either above or below 2000 m elevation. Metrics considering phylogenetic relationships among all species within assemblages showed phylogenetic clustering at high elevations and phylogenetic evenness in the lowlands, whereas those metrics considering only the closest co-occurring relatives showed the opposite trend. This result suggests that using multiple metrics of phylogenetic structure should provide greater insight into the mechanisms shaping assemblage structure. The source and spatial grain of data had important influences on estimates of both richness and phylogenetic structure. Metrics considering the co-occurrence of close relatives were particularly sensitive to changes in the spatial grain. Assemblages based on range maps included more species and showed less phylogenetic structure than assemblages based on museum or field inventories. Coarse-grained assemblages included more distantly related species and thus showed a more even phylogenetic structure than fine-grained assemblages. Our results emphasize the importance of carefully selecting the scale, source of data and metric used in analysis of the phylogenetic structure of assemblages

    Different outcome of six homozygotes for prothrombin A20210A gene variant

    Get PDF
    Prothrombin G20210A gene variant (FII G20210A) is a risk factor for venous thrombotic disease while conflicting results have been reported for the risk of arterial thrombotic events. However, vascular episodes were absent in up to 40% of the 67 homozygotes for the G20210A described so far, which indicates that the clinical expression depends on additional risk/trigger factors. We describe six homozygotes for the G20210A variant, among which the first pair of siblings (cases n. 3 and 4) reported so far that displayed a strongly heterogeneous clinical outcome. Case 1, a female of 27 years, developed a full thrombosis of common femoral, superficial and popliteal veins. She assumed oral contraceptives in the last two years. Case n. 2, 34 years old, suffered of recurrent pregnancy loss in absence of any causative alteration. Cases n. 3 and n. 5 experienced arterial thrombotic disease, i.e., juvenile myocardial infarction (40 years old) and stroke (48 years old), respectively, in absence of other risk factors. Finally, cases n. 4 and 6 identified as homozygotes for the FII G20210A variant being consanguineous of symptomatic subjects bearing the variant, did not experience any episode of venous nor arterial disease. Both of them have chronic liver disease with an impairement of the prothrombin time INR. Thus, homozygotes for the G20210A are at risk for arterial (in addition to venous) thromobotic events; chronic liver disease might modulate this risk

    Preoperative bevacizumab combined with letrozole and chemotherapy in locally advanced ER- and/or PgR-positive breast cancer: clinical and biological activity

    Get PDF
    The antiangiogenic agent bevacizumab showed synergistic effects when combined with chemotherapy in advanced breast cancer. We presently investigated the activity of bevacizumab in combination with chemotherapy, including capecitabine and vinorelbine, and endocrine therapy, including letrozole (+triptorelin in premenopausal women), as primary therapy for patients with ER and/or PgR ⩾10% T2–T4a-c, N0–N2, M0 breast cancer. Biological end point included the proliferative activity (Ki67), whereas clinical end points were clinical response rate, pathological complete response (pCR) and tolerability. Circulating endothelial cells (CECs) and their progenitors, as surrogate markers of antiangiogenic activity, were measured at baseline and at surgery.Thirty-six women are evaluable. A clinical response rate of 86% (95% CI, 70–95) and no pCR were observed; Ki67 was significantly decreased by 71% (interquartile range, −82%, −62%). Toxicity was manageable: two grade 3 hypertension, four grade 3 deep venous thrombosis and no grade >2 proteinuria were observed. Treatment significantly decreased the percentage of viable CECs and prevented the chemotherapy-induced mobilisation of circulating progenitors. Basal circulating progenitors were positively associated with clinical response. In conclusion, bevacizumab is feasible and active in association with primary chemoendocrine therapy for ER-positive tumours in terms of proliferation inhibition, clinical response and antiangiogenic activity

    Cork oak vulnerability to fire: the role of bark harvesting, tree characteristics and abiotic factors

    Get PDF
    Forest ecosystems where periodical tree bark harvesting is a major economic activity may be particularly vulnerable to disturbances such as fire, since debarking usually reduces tree vigour and protection against external agents. In this paper we asked how cork oak Quercus suber trees respond after wildfires and, in particular, how bark harvesting affects post-fire tree survival and resprouting. We gathered data from 22 wildfires (4585 trees) that occurred in three southern European countries (Portugal, Spain and France), covering a wide range of conditions characteristic of Q. suber ecosystems. Post-fire tree responses (tree mortality, stem mortality and crown resprouting) were examined in relation to management and ecological factors using generalized linear mixed-effects models. Results showed that bark thickness and bark harvesting are major factors affecting resistance of Q. suber to fire. Fire vulnerability was higher for trees with thin bark (young or recently debarked individuals) and decreased with increasing bark thickness until cork was 3–4 cm thick. This bark thickness corresponds to the moment when exploited trees are debarked again, meaning that exploited trees are vulnerable to fire during a longer period. Exploited trees were also more likely to be top-killed than unexploited trees, even for the same bark thickness. Additionally, vulnerability to fire increased with burn severity and with tree diameter, and was higher in trees burned in early summer or located in drier south-facing aspects. We provided tree response models useful to help estimating the impact of fire and to support management decisions. The results suggested that an appropriate management of surface fuels and changes in the bark harvesting regime (e.g. debarking coexisting trees in different years or increasing the harvesting cycle) would decrease vulnerability to fire and contribute to the conservation of cork oak ecosystemsinfo:eu-repo/semantics/publishedVersio

    Role of genetic polymorphisms in tumour angiogenesis

    Get PDF
    Angiogenesis plays a crucial role in the development, growth and spread of solid tumours. Pro- and anti-angiogenic factors are abnormally expressed in tumours, influencing tumour angiogenesis, growth and progression. Polymorphisms in genes encoding angiogenic factors or their receptors may alter protein expression and/or activity. This article reviews the literature to determine the possible role of angiogenesis-related polymorphisms in cancer. Further research studies in this potentially crucial area of tumour biology are proposed
    corecore