127 research outputs found
Complete quantum teleportation using nuclear magnetic resonance
Quantum mechanics provides spectacular new information processing abilities
(Bennett 1995, Preskill 1998). One of the most unexpected is a procedure called
quantum teleportation (Bennett et al 1993) that allows the quantum state of a
system to be transported from one location to another, without moving through
the intervening space. Partial implementations of teleportation (Bouwmeester et
al 1997, Boschi et al 1998) over macroscopic distances have been achieved using
optical systems, but omit the final stage of the teleportation procedure. Here
we report an experimental implementation of the full quantum teleportation
operation over inter-atomic distances using liquid state nuclear magnetic
resonance (NMR). The inclusion of the final stage enables for the first time a
teleportation implementation which may be used as a subroutine in larger
quantum computations, or for quantum communication. Our experiment also
demonstrates the use of quantum process tomography, a procedure to completely
characterize the dynamics of a quantum system. Finally, we demonstrate a
controlled exploitation of decoherence as a tool to assist in the performance
of an experiment.Comment: 15 pages, 2 figures. Minor differences between this and the published
versio
Directed differentiation of human pluripotent stem sells for the generation of high-order kidney organoids
Our understanding in the inherent properties of human pluripotent stem cells (hPSCs) have made possible the development of differentiation procedures to generate three-dimensional tissue-like cultures, so-called organoids. Here we detail a stepwise methodology to generate kidney organoids from hPSCs. This is achieved through direct differentiation of hPSCs in two-dimensional monolayer culture toward the posterior primitive streak fate, followed by induction of intermediate mesoderm-committed cells, which are further aggregated and cultured in three-dimensions to generate kidney organoids containing segmented nephron-like structures in a process that lasts 20 days. We also provide a concise description on how to assess renal commitment during the time course of kidney organoid generation. This includes the use of flow cytometry and immunocytochemistry analyses for the detection of specific renal differentiation markers
Bell Correlations and the Common Future
Reichenbach's principle states that in a causal structure, correlations of
classical information can stem from a common cause in the common past or a
direct influence from one of the events in correlation to the other. The
difficulty of explaining Bell correlations through a mechanism in that spirit
can be read as questioning either the principle or even its basis: causality.
In the former case, the principle can be replaced by its quantum version,
accepting as a common cause an entangled state, leaving the phenomenon as
mysterious as ever on the classical level (on which, after all, it occurs). If,
more radically, the causal structure is questioned in principle, closed
space-time curves may become possible that, as is argued in the present note,
can give rise to non-local correlations if to-be-correlated pieces of classical
information meet in the common future --- which they need to if the correlation
is to be detected in the first place. The result is a view resembling Brassard
and Raymond-Robichaud's parallel-lives variant of Hermann's and Everett's
relative-state formalism, avoiding "multiple realities."Comment: 8 pages, 5 figure
Mortality after infection with methicillin-resistant Staphylococcus aureus (MRSA) diagnosed in the community
<p>Abstract</p> <p>Background</p> <p>Outbreak reports suggest that community-acquired methicillin-resistant <it>Staphylococcus aureus </it>(MRSA) infections can be life-threatening. We conducted a population based cohort study to assess the magnitude of mortality associated with MRSA infections diagnosed in the community.</p> <p>Methods</p> <p>We used the United Kingdom's General Practice Research Database (GPRD) to form a cohort of all patients with MRSA diagnosed in the community from 2001 through 2004 and up to ten patients without an MRSA diagnosis. The latter were frequency-matched with the MRSA patients on age, GPRD practice and diagnosis date. All patients were older than 18 years, had no hospitalization in the 2 years prior to cohort entry and medical history information of at least 2 years prior to cohort entry. The cohort was followed up for 1 year and all deaths and hospitalizations were identified. Hazard ratios of all-cause mortality were estimated using the Cox proportional hazards model adjusted for patient characteristics.</p> <p>Results</p> <p>The cohort included 1439 patients diagnosed with MRSA and 14,090 patients with no MRSA diagnosis. Mean age at cohort entry was 70 years in both groups, while co-morbid conditions were more prevalent in the patients with MRSA. Within 1 year, 21.8% of MRSA patients died as compared with 5.0% of non-MRSA patients. The risk of death was increased in patients diagnosed with MRSA in the community (adjusted hazard ratio 4.1; 95% confidence interval: 3.5–4.7).</p> <p>Conclusion</p> <p>MRSA infections diagnosed in the community are associated with significant mortality in the year after diagnosis.</p
Asteroseismology and Interferometry
Asteroseismology provides us with a unique opportunity to improve our
understanding of stellar structure and evolution. Recent developments,
including the first systematic studies of solar-like pulsators, have boosted
the impact of this field of research within Astrophysics and have led to a
significant increase in the size of the research community. In the present
paper we start by reviewing the basic observational and theoretical properties
of classical and solar-like pulsators and present results from some of the most
recent and outstanding studies of these stars. We centre our review on those
classes of pulsators for which interferometric studies are expected to provide
a significant input. We discuss current limitations to asteroseismic studies,
including difficulties in mode identification and in the accurate determination
of global parameters of pulsating stars, and, after a brief review of those
aspects of interferometry that are most relevant in this context, anticipate
how interferometric observations may contribute to overcome these limitations.
Moreover, we present results of recent pilot studies of pulsating stars
involving both asteroseismic and interferometric constraints and look into the
future, summarizing ongoing efforts concerning the development of future
instruments and satellite missions which are expected to have an impact in this
field of research.Comment: Version as published in The Astronomy and Astrophysics Review, Volume
14, Issue 3-4, pp. 217-36
Torque Teno Sus Virus (TTSuV) in Cell Cultures and Trypsin
Torque teno sus virus (TTSuV), a member of the family Anelloviridae, is a single-stranded, circular DNA virus, widely distributed in swine populations. Presently, two TTSuV genogroups are recognized: Torque teno sus virus 1 (TTSuV1) and Torque teno sus virus 2 (TTSuV2). TTSuV genomes have been found in commercial vaccines for swine, enzyme preparations and other drugs containing components of porcine origin. However, no studies have been made looking for TTSuV in cell cultures. In the present study, a search for TTSuV genomes was carried out in cell culture lineages, in sera used as supplement for cell culture media as well as in trypsin used for cell disaggregation. DNA obtained from twenty-five cell lineages (ten from cultures in routine multiplication and fifteen from frozen ampoules), nine samples of sera used in cell culture media and five batches of trypsin were examined for the presence of TTSuV DNA. Fifteen cell lineages, originated from thirteen different species contained amplifiable TTSuV genomes, including an ampoule with a cell lineage frozen in 1985. Three cell lineages of swine origin were co-infected with both TTSuV1 and TTSuV2. One batch of trypsin contained two distinct TTSuV1 plus one TTSuV2 genome, suggesting that this might have been the source of contamination, as supported by phylogenetic analyses of sequenced amplicons. Samples of fetal bovine and calf sera used in cell culture media did not contain amplifiable TTSuV DNA. This is the first report on the presence of TTSuV as contaminants in cell lineages. In addition, detection of the viral genome in an ampoule frozen in 1985 provides evidence that TTSuV contamination is not a recent event. These findings highlight the risks of TTSuV contamination in cell cultures, what may be source for contamination of biological products or compromise results of studies involving in vitro multiplied cells
Mesenteric Resistance Arteries in Type 2 Diabetic db/db Mice Undergo Outward Remodeling
Resistance vessel remodeling is controlled by myriad of hemodynamic and neurohormonal factors. This study characterized structural and molecular remodeling in mesenteric resistance arteries (MRAs) in diabetic (db/db) and control (Db/db) mice.Structural properties were assessed in isolated MRAs from 12 and 16 wk-old db/db and Db/db mice by pressure myography. Matrix regulatory proteins were measured by Western blot analysis. Mean arterial pressure and superior mesenteric blood flow were measured in 12 wk-old mice by telemetry and a Doppler flow nanoprobe, respectively.Blood pressure was similar between groups. Lumen diameter and medial cross-sectional area were significantly increased in 16 wk-old db/db MRA compared to control, indicating outward hypertrophic remodeling. Moreover, wall stress and cross-sectional compliance were significantly larger in diabetic arteries. These remodeling indices were associated with increased expression of matrix regulatory proteins matrix metalloproteinase (MMP)-9, MMP-12, tissue inhibitors of matrix metalloproteinase (TIMP)-1, TIMP-2, and plasminogen activator inhibitor-1 (PAI-1) in db/db arteries. Finally, superior mesenteric artery blood flow was increased by 46% in 12 wk-old db/db mice, a finding that preceded mesenteric resistance artery remodeling.These data suggest that flow-induced hemodynamic changes may supersede the local neurohormonal and metabolic milieu to culminate in hypertrophic outward remodeling of type 2 DM mesenteric resistance arteries
Association of TLR7 Variants with AIDS-Like Disease and AIDS Vaccine Efficacy in Rhesus Macaques
In HIV infection, TLR7-triggered IFN-α production exerts a direct antiviral effect through the inhibition of viral replication, but may also be involved in immune pathogenesis leading to AIDS. TLR7 could also be an important mediator of vaccine efficacy. In this study, we analyzed polymorphisms in the X-linked TLR7 gene in the rhesus macaque model of AIDS. Upon resequencing of the TLR7 gene in 36 rhesus macaques of Indian origin, 12 polymorphic sites were detected. Next, we identified three tightly linked single nucleotide polymorphisms (SNP) as being associated with survival time. Genotyping of 119 untreated, simian immunodeficiency virus (SIV)-infected male rhesus macaques, including an ‘MHC adjusted’ subset, revealed that the three TLR7 SNPs are also significantly associated with set-point viral load. Surprisingly, this effect was not observed in 72 immunized SIV-infected male monkeys. We hypothesize (i) that SNP c.13G>A in the leader peptide is causative for the observed genotype-phenotype association and that (ii) the underlying mechanism is related to RNA secondary structure formation. Therefore, we investigated a fourth SNP (c.-17C>T), located 17 bp upstream of the ATG translation initiation codon, that is also potentially capable of influencing RNA structure. In c.13A carriers, neither set-point viral load nor survival time were related to the c.-17C>T genotype. In c.13G carriers, by contrast, the c.-17C allele was significantly associated with prolonged survival. Again, no such association was detected among immunized SIV-infected macaques. Our results highlight the dual role of TLR7 in immunodeficiency virus infection and vaccination and imply that it may be important to control human AIDS vaccine trials, not only for MHC genotype, but also for TLR7 genotype
Breaking Symmetric Cryptosystems Using Quantum Period Finding
Due to Shor's algorithm, quantum computers are a severe threat for public key
cryptography. This motivated the cryptographic community to search for
quantum-safe solutions. On the other hand, the impact of quantum computing on
secret key cryptography is much less understood. In this paper, we consider
attacks where an adversary can query an oracle implementing a cryptographic
primitive in a quantum superposition of different states. This model gives a
lot of power to the adversary, but recent results show that it is nonetheless
possible to build secure cryptosystems in it.
We study applications of a quantum procedure called Simon's algorithm (the
simplest quantum period finding algorithm) in order to attack symmetric
cryptosystems in this model. Following previous works in this direction, we
show that several classical attacks based on finding collisions can be
dramatically sped up using Simon's algorithm: finding a collision requires
queries in the classical setting, but when collisions happen
with some hidden periodicity, they can be found with only queries in the
quantum model.
We obtain attacks with very strong implications. First, we show that the most
widely used modes of operation for authentication and authenticated encryption
e.g. CBC-MAC, PMAC, GMAC, GCM, and OCB) are completely broken in this security
model. Our attacks are also applicable to many CAESAR candidates: CLOC, AEZ,
COPA, OTR, POET, OMD, and Minalpher. This is quite surprising compared to the
situation with encryption modes: Anand et al. show that standard modes are
secure with a quantum-secure PRF.
Second, we show that Simon's algorithm can also be applied to slide attacks,
leading to an exponential speed-up of a classical symmetric cryptanalysis
technique in the quantum model.Comment: 31 pages, 14 figure
Forest carbon sequestration:the impact of forest management
In this chapter, we describe alternative ways in which forests and forestry can help to mÃtigate climate change, along with the potential impact of these activities. The three carbon storage compartments should be considered inall impact estimates. Carbon content in living biomass is easily estimated via species-specific equations or by applying factors to oven-dry biomass weights (e.g.,lbañez et al.,2002, Herrero et al.,2011,Castaño and Bravo, 2012).Litter carbon content has been analysed in many studies on primary forest productivity, though
information regarding the influence of forest management on litter carbon content is less abundant (Blanco et al., 2006). In the last decade,efforts have been made to assess soil carbon in forests, but studies on the effect of forest management on soils show discrepancies (Lindner and Karjalainen,2007).Hoover (2011), for example,found no difference in forest floor carbon stocks among stands subjected to partial or complete harvest treatments in the United States.Instituto Universitario de Gestión Forestal Sostenibl
- …