631 research outputs found

    Robust Structured Low-Rank Approximation on the Grassmannian

    Full text link
    Over the past years Robust PCA has been established as a standard tool for reliable low-rank approximation of matrices in the presence of outliers. Recently, the Robust PCA approach via nuclear norm minimization has been extended to matrices with linear structures which appear in applications such as system identification and data series analysis. At the same time it has been shown how to control the rank of a structured approximation via matrix factorization approaches. The drawbacks of these methods either lie in the lack of robustness against outliers or in their static nature of repeated batch-processing. We present a Robust Structured Low-Rank Approximation method on the Grassmannian that on the one hand allows for fast re-initialization in an online setting due to subspace identification with manifolds, and that is robust against outliers due to a smooth approximation of the â„“p\ell_p-norm cost function on the other hand. The method is evaluated in online time series forecasting tasks on simulated and real-world data

    Neural crest migration is driven by a few trailblazer cells with a unique molecular signature narrowly confined to the invasive front

    Get PDF
    Neural crest (NC) cell migration is crucial to the formation of peripheral tissues during vertebrate development. However, how NC cells respond to different microenvironments to maintain persistence of direction and cohesion in multicellular streams remains unclear. To address this, we profiled eight subregions of a typical cranial NC cell migratory stream. Hierarchical clustering showed significant differences in the expression profiles of the lead three subregions compared with newly emerged cells. Multiplexed imaging of mRNA expression using fluorescent hybridization chain reaction (HCR) quantitatively confirmed the expression profiles of lead cells. Computational modeling predicted that a small fraction of lead cells that detect directional information is optimal for successful stream migration. Single-cell profiling then revealed a unique molecular signature that is consistent and stable over time in a subset of lead cells within the most advanced portion of the migratory front, which we term trailblazers. Model simulations that forced a lead cell behavior in the trailing subpopulation predicted cell bunching near the migratory domain entrance. Misexpression of the trailblazer molecular signature by perturbation of two upstream transcription factors agreed with the in silico prediction and showed alterations to NC cell migration distance and stream shape. These data are the first to characterize the molecular diversity within an NC cell migratory stream and offer insights into how molecular patterns are transduced into cell behaviors

    Parameter estimation of the kinetic α-Pinene isomerization model using the MCSfilter algorithm

    Get PDF
    This paper aims to illustrate the application of a derivative-free multistart algorithm with coordinate search filter, designated as the MCSFilter algorithm. The problem used in this study is the parameter estimation problem of the kinetic α -pinene isomerization model. This is a well known nonlinear optimization problem (NLP) that has been investigated as a case study for performance testing of most derivative based methods proposed in the literature. Since the MCSFilter algorithm features a stochastic component, it was run ten times to solve the NLP problem. The optimization problem was successfully solved in all the runs and the optimal solution demonstrates that the MCSFilter provides a good quality solution.(undefined)info:eu-repo/semantics/publishedVersio

    Distributed Fine-Grained Traffic Speed Prediction for Large-Scale Transportation Networks based on Automatic LSTM Customization and Sharing

    Full text link
    Short-term traffic speed prediction has been an important research topic in the past decade, and many approaches have been introduced. However, providing fine-grained, accurate, and efficient traffic-speed prediction for large-scale transportation networks where numerous traffic detectors are deployed has not been well studied. In this paper, we propose DistPre, which is a distributed fine-grained traffic speed prediction scheme for large-scale transportation networks. To achieve fine-grained and accurate traffic-speed prediction, DistPre customizes a Long Short-Term Memory (LSTM) model with an appropriate hyperparameter configuration for a detector. To make such customization process efficient and applicable for large-scale transportation networks, DistPre conducts LSTM customization on a cluster of computation nodes and allows any trained LSTM model to be shared between different detectors. If a detector observes a similar traffic pattern to another one, DistPre directly shares the existing LSTM model between the two detectors rather than customizing an LSTM model per detector. Experiments based on traffic data collected from freeway I5-N in California are conducted to evaluate the performance of DistPre. The results demonstrate that DistPre provides time-efficient LSTM customization and accurate fine-grained traffic-speed prediction for large-scale transportation networks.Comment: 14 pages, 7 figures, 2 tables, Euro-par 2020 conferenc

    The influence of infant feeding attitudes on breastfeeding duration: Evidence from a cohort study in rural Western Australia

    Get PDF
    Background - Breast milk is the optimal source of nutrition for infants in the first six months of life. Promoting and protecting breastfeeding is reflected in public health policy across the globe, but breastfeeding rates in both developing and industrialised countries continue to demonstrate that few mothers meet these recommendations. In addition to sociodemographic factors such as age, education and income, modifiable factors such as maternal infant feeding attitudes have been shown to influence breastfeeding duration. The objective of this paper was to describe the influence of infant feeding attitudes on breastfeeding duration in rural Western Australia. Methods - A cohort of 427 women and their infants were recruited from hospitals in rural Western Australia and followed for a period of 12 months. Information about feeding methods was gathered in hospital and at a further seven follow-up contacts. Infant feeding attitude was measured using the Iowa Infant Feeding Attitude Scale (IIFAS), and a score of > 65 was considered positive towards breastfeeding. Results - Mothers with an IIFAS score of > 65 were approximately twice as likely to be exclusively breastfeeding at six months, and breastfeeding at any intensity to 12 months. The median duration of exclusive breastfeeding for mothers with an IIFAS score of > 65 was 16 weeks (95 % CI 13.5, 18.5) compared with 5 weeks for those with a score  65 (48 vs. 22 weeks, p < 0.001). Conclusions -Women in this rural cohort who had a more positive attitude towards breastfeeding had a longer duration of both exclusive breastfeeding to six months and any breastfeeding to 12 months. Further research examining the breastfeeding attitudes of specific subgroups such as men, grandparents and adolescents in rural areas will contribute to the evidence base and help to ensure that breastfeeding is seen as the normal method of infant feeding

    Collective Animal Behavior from Bayesian Estimation and Probability Matching

    Get PDF
    Animals living in groups make movement decisions that depend, among other factors, on social interactions with other group members. Our present understanding of social rules in animal collectives is based on empirical fits to observations and we lack first-principles approaches that allow their derivation. Here we show that patterns of collective decisions can be derived from the basic ability of animals to make probabilistic estimations in the presence of uncertainty. We build a decision-making model with two stages: Bayesian estimation and probabilistic matching.&#xd;&#xa;In the first stage, each animal makes a Bayesian estimation of which behavior is best to perform taking into account personal information about the environment and social information collected by observing the behaviors of other animals. In the probability matching stage, each animal chooses a behavior with a probability given by the Bayesian estimation that this behavior is the most appropriate one. This model derives very simple rules of interaction in animal collectives that depend only on two types of reliability parameters, one that each animal assigns to the other animals and another given by the quality of the non-social information. We test our model by obtaining theoretically a rich set of observed collective patterns of decisions in three-spined sticklebacks, Gasterosteus aculeatus, a shoaling fish species. The quantitative link shown between probabilistic estimation and collective rules of behavior allows a better contact with other fields such as foraging, mate selection, neurobiology and psychology, and gives predictions for experiments directly testing the relationship between estimation and collective behavior

    Temperature and Malaria Trends in Highland East Africa

    Get PDF
    There has been considerable debate on the existence of trends in climate in the highlands of East Africa and hypotheses about their potential effect on the trends in malaria in the region. We apply a new robust trend test to mean temperature time series data from three editions of the University of East Anglia's Climatic Research Unit database (CRU TS) for several relevant locations. We find significant trends in the data extracted from newer editions of the database but not in the older version for periods ending in 1996. The trends in the newer data are even more significant when post-1996 data are added to the samples. We also test for trends in the data from the Kericho meteorological station prepared by Omumbo et al. We find no significant trend in the 1979-1995 period but a highly significant trend in the full 1979-2009 sample. However, although the malaria cases observed at Kericho, Kenya rose during a period of resurgent epidemics (1994-2002) they have since returned to a low level. A large assembly of parasite rate surveys from the region, stratified by altitude, show that this decrease in malaria prevalence is not limited to Kericho

    Time series modeling for syndromic surveillance

    Get PDF
    BACKGROUND: Emergency department (ED) based syndromic surveillance systems identify abnormally high visit rates that may be an early signal of a bioterrorist attack. For example, an anthrax outbreak might first be detectable as an unusual increase in the number of patients reporting to the ED with respiratory symptoms. Reliably identifying these abnormal visit patterns requires a good understanding of the normal patterns of healthcare usage. Unfortunately, systematic methods for determining the expected number of (ED) visits on a particular day have not yet been well established. We present here a generalized methodology for developing models of expected ED visit rates. METHODS: Using time-series methods, we developed robust models of ED utilization for the purpose of defining expected visit rates. The models were based on nearly a decade of historical data at a major metropolitan academic, tertiary care pediatric emergency department. The historical data were fit using trimmed-mean seasonal models, and additional models were fit with autoregressive integrated moving average (ARIMA) residuals to account for recent trends in the data. The detection capabilities of the model were tested with simulated outbreaks. RESULTS: Models were built both for overall visits and for respiratory-related visits, classified according to the chief complaint recorded at the beginning of each visit. The mean absolute percentage error of the ARIMA models was 9.37% for overall visits and 27.54% for respiratory visits. A simple detection system based on the ARIMA model of overall visits was able to detect 7-day-long simulated outbreaks of 30 visits per day with 100% sensitivity and 97% specificity. Sensitivity decreased with outbreak size, dropping to 94% for outbreaks of 20 visits per day, and 57% for 10 visits per day, all while maintaining a 97% benchmark specificity. CONCLUSIONS: Time series methods applied to historical ED utilization data are an important tool for syndromic surveillance. Accurate forecasting of emergency department total utilization as well as the rates of particular syndromes is possible. The multiple models in the system account for both long-term and recent trends, and an integrated alarms strategy combining these two perspectives may provide a more complete picture to public health authorities. The systematic methodology described here can be generalized to other healthcare settings to develop automated surveillance systems capable of detecting anomalies in disease patterns and healthcare utilization
    • …
    corecore